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System Overview
• Autonomous systems

• Use deep neural networks 
(DNNs) for decisions.

• Rely on continuous 
data-streams from sensors.

• System-on-Chips (SoCs)
• Contain multiple 

domain-specific-accelerators 
(DSAs)

• DSAs allow more efficient 
computation

GPS

Depth 
Camera

Xavier NX

Flight 
Controller

Xavier NX: Common 

SoC onboard 

autonomous platforms
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Autonomous System Example 
Workload - F1TENTH

DNN Traditional CV Parallelizable CPU-Only

M. O’Kelly and V. Sukhil and H. Abbas and et al. F1/10: An Open-Source Autonomous Cyber-Physical Platform, 2019
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Computation Onboard SoCs

1. DNNs
2. Traditional 

CV
3. Parallel 

Processors
4. General 

Processing

https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/

If we want the most efficient computation, 
we must use all available accelerators
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Comparison of Accelerators

Utilization of DSAs allows a different 
energy/latency tradeoff 

Observe an 
increase in 
overall 
latency

Observe a 
decrease in 
energy 
usage
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Motivation
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Object Detection on Autonomous 
SoCs

• Smaller/larger 
parameterizations

• Allow accuracy/latency trade 
off between models

• Larger models on edge 
platforms see increased 
latency and power draw

• Inter-Model Relationships
• Strict monotonic relationships 

between energy, accuracy, 
and latency

Bigger is better
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Object Detection using Multiple 
Models + Multiple Accelerators

• Running DNNs on multiple 
accelerators:

• Adds scheduling complexity
• Enables energy, accuracy, 

and latency tradeoffs
• Using multiple DNN 

architectures
• Remove strict monotonic 

relationships

Bigger is better
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Multi-Model Inference

1 2 3 4 5 6 7Which models achieve 
accuracy threshold:
1. All models
2. All YoloV7 + Resnet
3. YoloV7, YoloV7X
4. None
5. All except smallest
6. All models
7. All except smallest
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Motivation - Multi-Model - Cont.

1 2 3 4 5 6

Highest
efficiency
but will 
not meet 
accuracy
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Problem 
Statement
How can we utilize 
multiple models and 
multiple accelerators 
while optimizing for 
energy/latency?

- How do we know when 
we have chosen 
correctly?

- When do we switch 
between models or 
accelerators?
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Challenges
1. We need to determine 

context at runtime.
2. We need to assess the 

current accuracy of models 
based purely on runtime 
context.

3. How many models we can 
load at once is restricted by 
the shared memory system.

4. We need to choose models 
without true knowledge of 
their prediction strength.

Where are we within our 
environment?

How does model X perform 
while the drone is here?

Shared memory limits individual capacity
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Related Work
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Summary Efficient edge object detection
Multi 
Model

Multi 
Accelerator
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Related Work
• Continuous Detection

• Offloading
• Skipping frames
• Efficiency optimizations

• DNN inference for 
multi-accelerators

• Optimized schedules
• Subgraphs

• Multi Model Detection
• Multi-model scheme for pose 

prediction
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Energy Efficient Detect-and-Track
- Pros:

- Reduces energy 
usage by reducing 
number of object 
detection DNN 
inferences.

- Cons:
- Adds an additional 

DNN inference for 
each frame

- Processes 
asynchronously & 
skips frames

M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection on mobile devices without offloading,” in ICDCS’20
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Multi-Model Inference

- Pros:
- Multiple DNNs 

yield a better 
data spread 
compared to a 
single model

- Cons:
- Need to perform 

multiple 
inferences per 
frame.

G. Shi, Y. Zhu, J. Tremblay, and et al., “Fast uncertainty quantification for deep object pose estimation,” in ICRA’21
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Methodology
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Overview of SHIFT

• Model Characterization
• Identify key traits of each 

model
• Construct confidence graph

• SHIFT Scheduler
• Context detection
• Heuristic scheduler

• Dynamic Model Loader
• LRU model deallocation 

strategy
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Model Characterization
Identified Model Traits
• Accuracy
• Confidence Score
• Latency
• Energy
• Model Loading Cost

• Time
• Memory
• Energy

Prediction Methodology Goals
• Need to associate models 

offline without extra data
• Require fast predictions
• Deterministic model 

decisions
• Stable predictions
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Confidence Graph
1. Create node for every model on every accelerator at every bin
2. Run every model on every accelerator on every image in 

validation set
3. Create edge weights from results of step 2
4. Process weights in neighborhood

a. Neighborhood is defined as the one-hop adjacent nodes
5. Traverse with BFS
6. Aggregate common models for final predictions

Yields ahead-of-time static predictions, O(1)
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Confidence Graph - Nodes

Create a node in the graph for each model for each portion of the 
discrete confidence intervals

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3



MINES.EDU

Confidence Graph - Performance

Run each available model on each accelerator on each image of the 
validation set

images   model1   model2   model3   model4   
image1   0.1      0.0      0.19     0.36     
image2   0.39     0.64     0.58     0.55     
image3   0.63     0.46     0.84     0.48     
image4   0.76     0.66     0.86     0.58     
image5   0.81     0.76     0.97     0.57     
image6   0.93     0.84     0.91     0.86     
image7   0.75     0.95     0.52     0.91     
image8   0.53     0.4      0.3      0.64     
image9   0.75     0.55     0.72     0.83     
image10  0.95     0.78     0.71     0.96     
image11  0.92     0.71     0.79     0.64     
image12  0.66     0.36     0.42     0.48     
image13  0.82     0.73     0.63     0.7      
image14  0.61     0.51     0.83     0.43     
image15  0.62     0.74     0.35     0.75     
image16  0.72     0.97     0.74     0.58     
image17  0.61     0.58     0.84     0.44     
image18  0.93     0.87     0.68     0.83     
image19  0.5      0.38     0.79     0.35     
image20  0.52     0.28     0.5      0.54  
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Confidence Graph - Edges

Increment the edge weight between two nodes if the 
model/confidence interval pairs are both present on the image

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

20 19
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1
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Confidence Graph - Weights

Clamp to a percentile, cull weak edges, normalize, and invert edge 
weights such that an edge weight has a lower is better standard

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

20 19
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1
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Confidence Graph - Weights - Clamp

80th percentile of [1, 3, 5, 13, 15, 16, 19, 20] is 17.8

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

20 19
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1
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Confidence Graph - Weights - Clamp

80th percentile of [1, 3, 5, 13, 15, 16, 19, 20] is 17.8

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1
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Confidence Graph - Weights - Cull

Edges with a single connection are too “noisy”

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1
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Confidence Graph - Weights - Cull

Edges with a single connection are too “noisy”

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2
13
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Confidence Graph - Weights - Normalize

Divide all edge weights by the maximum weight in the neighborhood

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2
13
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Confidence Graph - Weights - Normalize

Divide all edge weights by the maximum weight in the neighborhood

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

1.0 1.0
0.84

0.280.89
0.17

MobilenetV2_GPU_0.2
0.73
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Confidence Graph - Weights - Invert

Invert edges by subtracting edge weight from 1.0

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

1.0 1.0
0.84

0.280.89
0.17

MobilenetV2_GPU_0.2
0.73
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Confidence Graph - Weights - Invert

Invert edges by subtracting edge weight from 1.0

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

0.0 0.0
0.16

0.720.11
0.83

MobilenetV2_GPU_0.2
0.27
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Confidence Graph - Final Edge Weights

Final edge weights after the post processing stage. Post processing 
includes outlier removal, clamping, and inversion of weights.

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

0.0 0.0
0.16

0.720.11
0.83

MobilenetV2_GPU_0.2
0.27

MobilenetV2_GPU_0.3
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An inference of YoloV7 on GPU with a 
confidence score between 0.1 and 0.2 
yields:

Confidence Graph - BFS

Model Accelerator Accuracy Cost Number of Nodes

YoloV7 DLA 0.4 0.0 1

YoloV7 VPU 0.4 0.0 1

YoloV7 Tiny GPU 0.3001 0.002 2

YoloV7 Tiny DLA 0.3 0.73 1

MobilenetV2 GPU 0.3 0.41 1
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Confidence Graph - BFS

Perform BFS traversal

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

0.0 0.0
0.16

0.720.11
0.83

MobilenetV2_GPU_0.2
0.27
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Confidence Graph - BFS

Perform BFS traversal

YoloV7_GPU_0.1: 
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72
● YoloV7tiny_VPU_0.2, 0.83
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Confidence Graph - BFS

Cut neighbors outside of the cost threshold, use 0.75 here

YoloV7_GPU_0.1: 
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72
● YoloV7tiny_VPU_0.2, 0.83
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Confidence Graph - BFS

Cut neighbors outside of the cost threshold, use 0.75 here

YoloV7_GPU_0.1: 
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72
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Confidence Graph - BFS - Aggregate

Aggregate model accuracies with a weighted average

YoloV7_GPU_0.1: 
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72
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Confidence Graph - BFS - Aggregate

Aggregate model accuracies with a weighted average
Add the mean accuracy for the model in the range

YoloV7_GPU_0.1: 
● YoloV7_DLA_0.1, 0.0, 0.4
● YoloV7_VPU_0.1, 0.0, 0.4
● YoloV7tiny_GPU_0.1, 0.16, 0.3
● YoloV7tiny_GPU_0.2, 0.72, 0.35
● YoloV7tiny_DLA_0.1, 0.11, 0.3
● MobilenetV2_GPU_0.2, 0.27, 0.3
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Confidence Graph - BFS - Aggregate

Compute a weighted average, first transform weights using:
w = max(((cost_threshold - w) / cost_threshold) ** 2, 1e-8)

YoloV7_GPU_0.1: 
● YoloV7_DLA_0.1, 0.0, 0.4
● YoloV7_VPU_0.1, 0.0, 0.4
● YoloV7tiny_GPU_0.1, 0.16, 0.3
● YoloV7tiny_GPU_0.2, 0.72, 0.35
● YoloV7tiny_DLA_0.1, 0.11, 0.3
● MobilenetV2_GPU_0.2, 0.27, 0.3
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Confidence Graph - BFS - Aggregate

Compute a weighted average, first transform weights using:
w = max(((cost_threshold - w) / cost_threshold) ** 2, 1e-8)

YoloV7_GPU_0.1: 
● YoloV7_DLA: [(1.0, 0.4)]
● YoloV7_VPU: [(1.0, 0.4)]
● YoloV7tiny_GPU: [(0.62, 0.3), (0.001, 0.35)]
● YoloV7tiny_DLA: [(0.73, 0.3)]
● MobilenetV2_GPU: [(0.41, 0.3)]



MINES.EDU

Confidence Graph - BFS - Aggregate

Compute the estimated accuracy with a weighted average

YoloV7_GPU_0.1: 
● YoloV7_DLA: [(1.0, 0.4)]
● YoloV7_VPU: [(1.0, 0.4)]
● YoloV7tiny_GPU: [(0.62, 0.3), (0.001, 0.35)]
● YoloV7tiny_DLA: [(0.73, 0.3)]
● MobilenetV2_GPU: [(0.41, 0.3)]
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Confidence Graph - BFS - Aggregate

Compute the estimated accuracy with a weighted average

YoloV7_GPU_0.1: 
● YoloV7_DLA: acc: 0.4
● YoloV7_VPU: acc: 0.4
● YoloV7tiny_GPU: acc: 0.30008 
● YoloV7tiny_DLA: acc: 0.3
● MobilenetV2_GPU: acc: 0.3
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Confidence Graph - BFS - Aggregate

Now we have the static accuracy of all models on all accelerators 
given one model on an accelerator with a certain confidence score. 
These predictions can be pre-computed and stored in a hashmap 
for O(1) accuracy predictions.

YoloV7_GPU_0.1: 
● YoloV7_DLA: acc: 0.4
● YoloV7_VPU: acc: 0.4
● YoloV7tiny_GPU: acc: 0.30008 
● YoloV7tiny_DLA: acc: 0.3
● MobilenetV2_GPU: acc: 0.3
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SHIFT Scheduler
• Set of energy/accuracy/latency 

knobs for user adjustment
• Computes image similarity 

across entire image and 
detected bounding boxes to 
determine if context is 
changing

• Minimizes perceived cost
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Dynamic Model Loader
• Models occupy memory
• SoCs utilize shared memory 

(commonly)
• Too many models allocated will 

lead to programs being killed
• Deallocate models using LRU 

to save memory
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Results
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Results - All Models

YoloV7 on GPU achieves highest success rate 
across our tests. This model serves as our baseline
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Scenario 1 - Simple
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Scenario 2 - Slightly more complex
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Scenario 3 - Complex
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Scenario 4 - Simple Indoor
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Overall Methodologies

Maintained good results with fewer than half of the swaps and 
fewer allocated models than oracle methods.
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Sensitivity Analysis

1. Knobs have correct relationship relative to each metric
2. Momentum (filtering results) does not have significant impact
3. Reducing cost threshold (using closer nodes only) has positive 

impacts
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Conclusions



7.5x Energy usage improvement
2.8x Latency improvement
0.97x Accuracy performance
vs. YoloV7 on GPU
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Thank you!
Any questions?


