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Introduction
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Controller

System Overview

. Autonomous systems

Use deep neural networks
(DNNs) for decisions.

Rely on continuous
data-streams from sensors.

System on-Chips (SoCs)

Contain multiple
domain-specific-accelerators
(DSAS)

DSAs allow more efficient
computation
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M. O’Kelly and V. Sukhil and H. Abbas and et al. F1/10: An Open-Source Autonomous Cyber-Physical Platform, 2019
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Computation Onboard SoCs

Multimedia Complex

DNNs it
NV Encoder NV
384-core GPU JPEG
48 Tensor Cores NV Decoder

Compositor

Parallel “x : e
P rocessors L1/L2/L3 Cache L1/L2 Cache Video Ingest (VI)

\
General I | |
Processing

If we want the most efficient computation,
we must use all available accelerators

https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
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Comparison of Accelerators
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Tensor Size

Utilization of DSAs allows a different
energy/latency tradeoff
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Motivation
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Object Detection on Autonomous
SoCs
®YoloV7 ®YoloV7Tiny ®YoloV7X

. Smaller/larger ® YoloV7EGE
parameterizations

- Allow accuracy/latency trade
off between models

- Larger models on edge
platforms see increased
latency and power draw

Inter-Model Relationships

. Strict monotonic relationships
between energy, accuracy,
and latency

Latency

Accuracy nergy

Bigger is better
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Object Detection using Multiple
Models + Multiple Accelerators

: : ®YoloV7 ® MobilenetVl GPU
. Runnlng DNNs on multlple ® MobilenetV1 DLA ® Resnet50

accelerators:
- Adds scheduling complexity

- Enables energy, accuracy,
and latency tradeoffs

. Using multiple DNN
architectures

- Remove strict monotonic Accuracy
relationships

Latency

nergy

Bigger is better
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Multi-Model Inference
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Motivation - Multi-Model - Cont.
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Problem
State m e nt ®YoloV7 ®YoloV7Tiny ® YoloV7X ®YoloV7 ® MobilenetV1 GPU

® YoloV7EGE ® MobilenetV1 DLA ® Resnet50

How can we utilize
multiple models and
multiple accelerators
while optimizing for

Latency Latency

energy/latency? g’
- How do we know when
we have chosen Accuracy Energy Accuracy nergy
correctly?

- When do we switch
between models or
accelerators?
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Challenges

1.

We need to determine
context at runtime.

We need to assess the
current accuracy of models
based purely on runtime
context.

How many models we can
load at once is restricted by

the shared memory system.

We need to choose models
without true knowledge of
their prediction strength.
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" How does model X perform

Where are we within our
enwronment?

while the drone is here?

NVD oder

Multimedia Complex
— -
NV Encod NV
JPEG

Shared memory limits individual capacity
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Related Work
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Related Work

. Continuous Detection
. Offloading
- Skipping frames
- Efficiency optimizations
- DNN inference for
multi-accelerators
- Optimized schedules
- Subgraphs
. Multi Model Detection

- Multi-model scheme for pose
prediction

Accuracy

Energy Latency
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Energy Efficient Detect-and-Track

Detected
objects

Frame 1, n+1 [ DNN-based Input size
| Object Detector !

) P rOS : Frame ) : Detected DNN Model Overlay
- Red uces ene rgy Buffer ; objects Adaptation Drawer

usage by reducing o omeet L _ !

Erafie2 3 i Tracker Video content

number of object S : change e Tracked
detection DNN b e s S,

. Fig. 3. Architecture of AdaVP. Each frame is either processed by the object
|nfe rences. detector or by the object tracker. The object tracker takes the objects detected

C . by the object detector as input. The object detector uses the results of the
O n S object tracker to calculate the video content change rate and further adapt its

11 DNN model setting. Finally, the processed frame will be passed to the overlay

- Adds an add |t|0na| drawer module to draw the bounding boxes and display the frame on screen.

DNN inference for 3 e
each frame Qﬁﬁﬁ' rﬂ'ﬂ’ﬂ’ﬁﬁ e

- Processes e _ T
asynchronously &
skips frames

- Object Detector

|:] Object Tracker

Fig. 4. Two different video processing systems, i.e., a baseline system and the pipeline of parallel detection and tracking.

FE— + | Frame ng+1, ..., ny-1 | frame ny+1,..., ny-1 | Frame ni+1, ..., n-1

M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection on mobile devices without offloading,” in ICDCS’20
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Multi-Model Inference

———————————————————————————————————————————————————————

(a) Heterogeneous Pose | E Average !

. Pros: Estimators Predictions ;| | Disagreement i
- Multiple DNNs image = 5 g.,;l;f(mm);

Lo Isigs :

yield a better
data spread
compared to a
single model

- Cons:

- Need to perform
multiple
inferences per
frame.

| nNvisi pope |

G. Shi, Y. Zhu, J. Tremblay, and et al., “Fast uncertainty quantification for deep object pose estimation,” in ICRA'21
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Methodology




Overview of SHIFT

« Model Characterization

* |dentify key traits of each
model

« Construct confidence graph
 SHIFT Scheduler
* Context detection
* Heuristic scheduler
* Dynamic Model Loader
 LRU model deallocation
strategy
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Model Characterization

|dentified Model Traits Prediction Methodology Goals
- Accuracy Need to associate models
. Confidence Score ofﬂme without extra data
. Latency - Require fast predictions
. Energy - Deterministic model
. decisions
. Model Loading Cost L
. . Stable predictions
- Time
- Memory
- Energy
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Confidence Graph

1. Create node for every model on every accelerator at every bin

2. Run every model on every accelerator on every image in
validation set

3. Create edge weights from results of step 2

4. Process weights in neighborhood
a. Neighborhood is defined as the one-hop adjacent nodes

5. Traverse with BFS
6. Aggregate common models for final predictions

Yields ahead-of-time static predictions, O(1)
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Confidence Graph - Nodes

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny GPU_0.1
MobilenetV2_GPU 0.2 YoloV7_GPU_0.1 MobilenetV2_GPU_0.3
YoloV7tiny VPU_0.2 YoloV7tiny GPU_0.2
YoloV7tiny DLA_0.1

Create a node in the graph for each model for each portion of the
discrete confidence intervals
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Confldence Graph - Performance

images modell model2 model3 model4

imagel 0.1 0.0 0.19 0.36
image? 0.39 0.64 0.58 0.55
image3 0.63 0.46 0.84 0.48
image4 0.76 0.66 0.86 0.58
imageb 0.81 0.76 0.97 0.57
imageb6 0.93 0.84 0.91 0.86
image7 0.75 0.95 0.52 0.91
image8 0.53 0.4 0.3 0.64
image9 0.75 0.55 0.72 0.83
imagelO0 0.95 0.78 0.71 0.96
imagell 0.92 0.71 0.79 0.64
imagel2 0.66 0.36 0.42 0.48
imagel3 0.82 0.73 0.63 0.7

imageld4 0.61 0.51 0.83 0.43
imagelb 0.62 0.74 0.35 0.75
imagelt 0.72 0.97 0.74 0.58
imagel7 0.61 0.58 0.84 0.44
imagel8 0.93 0.87 0.68 0.83
imagel9 0.5 0.38 0.79 0.35
image20 0.52 0.28 0.5 0.54

Run each available model on each accelerator on each image of the
validation set
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Confidence Graph - Edges

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
20 19
13
MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
16
YoloV7tiny_ VPU 0.2 YoloV7tiny_ GPU_0.2
YoloV7tiny DLA 0.1

Increment the edge weight between two nodes if the
model/confidence interval pairs are both present on the image

YoloV7_GPU_0.1
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Confidence Graph - Weights

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
20 19
13
MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
16
YoloV7tiny_ VPU 0.2 YoloV7tiny_ GPU_0.2
YoloV7tiny DLA 0.1

Clamp to a percentile, cull weak edges, normalize, and invert edge
weights such that an edge weight has a lower is better standard

YoloV7_GPU_0.1
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Confidence Graph - Weights - Clamp

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
20 19
13
MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
16
YoloV7tiny_ VPU 0.2 YoloV7tiny_ GPU_0.2
YoloV7tiny DLA 0.1

80th percentile of [1, 3, 5, 13, 15, 16, 19, 20] is 17.8

YoloV7_GPU_0.1
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Confidence Graph - Weights - Clamp

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
17.8 17.8
13
MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
16
YoloV7tiny_ VPU 0.2 YoloV7tiny_ GPU_0.2
YoloV7tiny DLA 0.1

80th percentile of [1, 3, 5, 13, 15, 16, 19, 20] is 17.8

YoloV7_GPU_0.1
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Confidence Graph - Weights - Cull

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
17.8 17.8
13
MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
16
YoloV7tiny_ VPU 0.2 YoloV7tiny_ GPU_0.2
YoloV7tiny DLA 0.1

Edges with a single connection are too “noisy”

YoloV7_GPU_0.1
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Confidence Graph - Weights - Cull

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
17.8 17.8
15
13
MobilenetV2_GPU_0.2
3
16
YoloV7tiny_ VPU 0.2 YoloV7tiny_ GPU_0.2
YoloV7tiny DLA 0.1

Edges with a single connection are too “noisy”

YoloV7_GPU_0.1
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Confidence Graph - Weights - Normalize

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
17.8 17.8
13
MobilenetV2_GPU_0.2
3

16
YoloV7tiny VPU_0.2 YoloV7tiny GPU_0.2
YoloV7tiny DLA_0.1

Divide all edge weights by the maximum weight in the neighborhood

15

YoloV7_GPU_0.1
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Confidence Graph - Weights - Normalize

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
1.0 1.0
0.73
MobilenetV2_GPU_0.2

0.17

0.84

YoloV7_GPU_0.1

0.28

0.89
YoloV7tiny VPU_0.2 YoloV7tiny GPU_0.2
YoloV7tiny DLA_0.1

Divide all edge weights by the maximum weight in the neighborhood
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Confidence Graph - Weights - Invert

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_ GPU_0.1
1.0 1.0
0.73
MobilenetV2_GPU_0.2

0.17

0.84

YoloV7_GPU_0.1

0.28

0.89
YoloV7tiny VPU_0.2 YoloV7tiny GPU_0.2
YoloV7tiny DLA_0.1

Invert edges by subtracting edge weight from 1.0
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Confidence Graph - Weights - Invert

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1
0.0 0.0
0.27
MobilenetV2_GPU_0.2

0.83

0.16

YoloV7_GPU_0.1

0.72

0.11
YoloV7tiny VPU_0.2 YoloV7tiny GPU_0.2
YoloV7tiny DLA_0.1

Invert edges by subtracting edge weight from 1.0
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Confidence Graph - Final Edge Weights

YoloV7_VPU_0.1
YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1
0.0 0.0
0.27
MobilenetV2_GPU_0.2

0.83

0.16

MobilenetV2_GPU 0.3
0.72
0.11
YoloV7tiny VPU 0.2 YoloV7tiny GPU 0.2
YoloV7tiny DLA 0.1

Final edge weights after the post processing stage. Post processing
includes outlier removal, clamping, and inversion of weights.

COLORADOSCHOOLOFMINES
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Confidence Graph - BFS

An inference of YoloV7 on GPU with a
confidence score between 0.1 and 0.2

yields:
Model Accelerator Accuracy Cost Number of Nodes
YoloV7 DLA 0.4 0.0 1
YoloV7 VPU 0.4 0.0 1
YoloV7 Tiny GPU 0.3001 0.002 2
YoloV7 Tiny DLA 0.3 0.73 1
MobilenetV2 GPU 0.3 0.41 1

COLORADOSCHOOLOFMINES MINES EDU
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Confidence Graph - BFS

YoloV7_VPU_0.1

YoloV7_DLA_0.1 YoloV7tiny GPU_0.1

0.0

MobilenetV2_GPU_0.2 YoloV7_GPU_0.1

YoloV7tiny VPU_0.2 YoloV7tiny GPU_0.2

YoloV7tiny DLA_0.1

Perform BFS traversal

COLORADOSCHOOLOFMINES
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Confidence Graph - BFS

YoloV7_GPU _0.1:

Yo
Yo
Yo
Yo

oV7 DLA 0.1, 0.0
oV7_VPU 0.1, 0.0
oV7tiny DLA 0.1, 0.11
oV7tiny GPU 0.1, 0.16

MobilenetV2 GPU 0.2, 0.27
YoloV7tiny GPU 0.2, 0.72
YoloV7tiny VPU 0.2, 0.83

Perform BFS traversal

COLORADOSCHOOLOFMINES
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Confidence Graph - BFS

YoloV7_GPU _0.1:

YoloV7 _DLA 0.1, 0.0
YoloV7_VPU 0.1,0.0
YoloV7tiny DLA 0.1, 0.11
YoloV7tiny GPU 0.1, 0.16
MobilenetV2 GPU 0.2, 0.27
YoloV7tiny GPU 0.2, 0.72
YoloV7tiny VPU 0.2, 0.83

Cut neighbors outside of the cost threshold, use 0.75 here
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Confidence Graph - BFS

YoloV7_GPU _0.1:

YoloV7 _DLA 0.1,0.0
YoloV7_VPU 0.1, 0.0
YoloV7tiny DLA 0.1, 0.11
YoloV7tiny GPU 0.1, 0.16
MobilenetV2 GPU 0.2, 0.27
YoloV7tiny GPU 0.2, 0.72

Cut neighbors outside of the cost threshold, use 0.75 here
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Confidence Graph - BFS - Aggregate

YoloV7_GPU _0.1:

YoloV7 _DLA 0.1,0.0
YoloV7_VPU 0.1, 0.0
YoloV7tiny DLA 0.1, 0.11
YoloV7tiny GPU 0.1, 0.16
MobilenetV2 GPU 0.2, 0.27
YoloV7tiny GPU 0.2, 0.72

Aggregate model accuracies with a weighted average
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Confidence Graph - BFS - Aggregate

YoloV7_GPU _0.1:

YoloV7_DLA 0.1,0.0,04
YoloV7_VPU 0.1,0.0,0.4
YoloV7tiny GPU 0.1, 0.16, 0.3
YoloV7tiny GPU 0.2, 0.72, 0.35
YoloV7tiny DLA 0.1,0.11, 0.3
MobilenetV2_ _GPU 0.2, 0.27, 0.3

Aggregate model accuracies with a weighted average
Add the mean accuracy for the model in the range
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Confidence Graph - BFS - Aggregate

YoloV7_GPU _0.1:

YoloV7_DLA 0.1,0.0,04
YoloV7_VPU 0.1,0.0,0.4
YoloV7tiny GPU 0.1, 0.16, 0.3
YoloV7tiny GPU 0.2, 0.72, 0.35
YoloV7tiny DLA 0.1,0.11, 0.3
MobilenetV2_ _GPU 0.2, 0.27, 0.3

Compute a weighted average, first transform weights using:
w = max(((cost_threshold - w) / cost_threshold) ** 2, 1e-8)
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Confidence Graph - BFS - Aggregate

YoloV7_GPU _0.1:

e YoloV7 DLA:[(1.0,0.4)]

YoloV7_VPU: [(1.0, 0.4)]

YoloV7tiny GPU: [(0.62, 0.3), (0.001, 0.35)]
YoloV7tiny DLA: [(0.73, 0.3)]
MobilenetV2_GPU: [(0.41, 0.3)]

Compute a weighted average, first transform weights using:
w = max(((cost_threshold - w) / cost_threshold) ** 2, 1e-8)

COLORADOSCHOOLOFMINES MINES EDU



Confidence Graph - BFS - Aggregate

YoloV7_GPU _0.1:

e YoloV7 DLA:[(1.0,0.4)]

YoloV7_VPU: [(1.0, 0.4)]

YoloV7tiny GPU: [(0.62, 0.3), (0.001, 0.35)]
YoloV7tiny DLA: [(0.73, 0.3)]
MobilenetV2_GPU: [(0.41, 0.3)]

Compute the estimated accuracy with a weighted average
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Confidence Graph - BFS - Aggregate

YoloV7_GPU _0.1:

e YoloV/ DLA:acc:0.4

YoloV/7 VPU: acc: 0.4
YoloV7tiny GPU: acc: 0.30008
YoloV7tiny DLA: acc: 0.3
MobilenetV2_ GPU: acc: 0.3

Compute the estimated accuracy with a weighted average
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Confidence Graph - BFS - Aggregate

YoloV7_GPU _0.1:

e YoloV/ DLA:acc:0.4

YoloV/7 VPU: acc: 0.4
YoloV7tiny GPU: acc: 0.30008
YoloV7tiny DLA: acc: 0.3
MobilenetV2_ GPU: acc: 0.3

Now we have the static accuracy of all models on all accelerators
given one model on an accelerator with a certain confidence score.
These predictions can be pre-computed and stored in a hashmap
for O(1) accuracy predictions.
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S H I FT S C h ed u Ie r Algorithm 1 Model Scheduling

: procedure SHI/FT SCHEDULE(m, ¢, ,b)
s = min(NCC(lastImage, 7), NCC(lastBbox, b))
if s X ¢ > accuracyT hreshold then
return m

1

3

4. .
Set of energy/accuracy/latency — »  odif

7

8

) : scheduler.energy >0 — '1 model energy
knobs for user adjustment W schedulermeights T Tned ko
. . . . 9: )= graphPredicl(ﬁl, c) > set of (name, acc, dist)
. Computes image similarity b B — mgl e
. . 11: or (n,a,a) € C do
across entire image and = e
detected bounding boxes to 4 end for o
. . . 15 V={n|né€R,n>accuracylhreshold }
determine if context is 6 iflength(V) =0 then
. 97 =1
changin 18:  end if
g g 19: For e R.keys()?do 1 N '
. Minimizes perceived cost H sale SRS
22: nd for
> (p — mean (p))((‘ — mean(c)) ;3; f'et(:lrn max (scores)

NEC(h.2) = (1)
\/Z (¢ — mean( \/Z (p — mean(p))?

24: end procedure
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Dynamic Model Loader

. Models occupy memory

. S0Cs utilize shared memory
(commonly)

. Too many models allocated will
lead to programs being killed

- Deallocate models using LRU
to save memory
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Results
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Results - All Models

Model Name Accuracy Avg. Time (s) Avg. Energy (Joules) Avg. Power Draw (W)
Avg. IoU  Success Rate GPU GPU/DLA OAK-D GPU GPU/DLA OAK-D GPU GPU/DLA OAK-D
YoloV7-E6E 0.564 65.8% 0:253 0.221 - 3.947 1.228 - 15.48 .56 -
YoloV7-X 0.593 71.1% 0.222 0.195 - 3.586 1.088 - 16.15 3.7 -
YoloV7 0.618 74.1% 0.130 0.118 0.894 1.968 0.656 1.391 15.14 5.56 1.56
YoloV7/-Tiny 0.533 64.0% 0.025 0.024 0.107 0.280 0.134 0.206 i 3.58 1.93
SSD Resnet50 0.480 58.9% 0.151 0.138 - 2.504 0.816 - 16.58 5.91 -
SSD MobilenetV1 0.452 55.4% 0.094 0.092 - 1.519 0.561 - 16.16 6.10 -
SSD MobilenetV2 0.401 51.3% 0.023 0.058 - 0.248 0.307 - 10.78 329 -
SSD MobilenetV2 320x320 0.304 36.2% 0.009 0.023 - 0.046 0.100 - 3:.11 4.35 -

YoloV7 on GPU achieves highest success rate
across our tests. This model serves as our baseline
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Scenario 1 - Simple
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Scenario 2 - Slightly more complex
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Scenario 3 - Complex
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Scenario 4 - Simple Indoor
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Overall Methodologies

Methodology | loU Time  Energy Success Non- Model Pairs
(S) (J) Rate GPU Swaps Used
Marlin 0.614 0.132 1.201  74.0% 0% 0 |
Marlin Tiny |[0.529  0.036  0.33 64.0% 0% 0 |
SHIFT 0.598 0.047 0262 722% 68.7% 42 4.3
Oracle E 0.535 0.025 0.144 76.0% 31.5% 94 6.7
Oracle A 0.657 0.108 1423 76.0% 449% 409 12.3
Oracle L 0522 00253 0leY FeN% 11.5% 112 6.8

Maintained good results with fewer than half of the swaps and
fewer allocated models than oracle methods.
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Sensitivity Analysis
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Knobs have correct relationship relative to each metric
Momentum (filtering results) does not have significant impact
Reducing cost threshold (using closer nodes only) has positive
impacts
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Conclusions
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7.9x Energy usage improvement
2.8x Latency improvement
0.97x Accuracy performance

vs. YoloV7 on GPU



Thank you!

Any questions?




