
MINES.EDU

Context-aware Multi-Model Object Detection
for Diversely Heterogeneous Compute
Systems

Justin Davis
Mehmet E. Belviranli

MINES.EDU

Introduction

MINES.EDU

System Overview
• Autonomous systems

• Use deep neural networks
(DNNs) for decisions.

• Rely on continuous
data-streams from sensors.

• System-on-Chips (SoCs)
• Contain multiple

domain-specific-accelerators
(DSAs)

• DSAs allow more efficient
computation

GPS

Depth
Camera

Xavier NX

Flight
Controller

Xavier NX: Common

SoC onboard

autonomous platforms

MINES.EDU

Autonomous System Example
Workload - F1TENTH

DNN Traditional CV Parallelizable CPU-Only

M. O’Kelly and V. Sukhil and H. Abbas and et al. F1/10: An Open-Source Autonomous Cyber-Physical Platform, 2019

MINES.EDU

Computation Onboard SoCs

1. DNNs
2. Traditional

CV
3. Parallel

Processors
4. General

Processing

https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/

If we want the most efficient computation,
we must use all available accelerators

MINES.EDU

Comparison of Accelerators

Utilization of DSAs allows a different
energy/latency tradeoff

Observe an
increase in
overall
latency

Observe a
decrease in
energy
usage

MINES.EDU

Motivation

MINES.EDU

Object Detection on Autonomous
SoCs

• Smaller/larger
parameterizations

• Allow accuracy/latency trade
off between models

• Larger models on edge
platforms see increased
latency and power draw

• Inter-Model Relationships
• Strict monotonic relationships

between energy, accuracy,
and latency

Bigger is better

MINES.EDU

Object Detection using Multiple
Models + Multiple Accelerators

• Running DNNs on multiple
accelerators:

• Adds scheduling complexity
• Enables energy, accuracy,

and latency tradeoffs
• Using multiple DNN

architectures
• Remove strict monotonic

relationships

Bigger is better

MINES.EDU

Multi-Model Inference

1 2 3 4 5 6 7Which models achieve
accuracy threshold:
1. All models
2. All YoloV7 + Resnet
3. YoloV7, YoloV7X
4. None
5. All except smallest
6. All models
7. All except smallest

In
te

rs
ec

tio
n

ov
er

 U
ni

on

MINES.EDU

Motivation - Multi-Model - Cont.

1 2 3 4 5 6

Highest
efficiency
but will
not meet
accuracy

MINES.EDU

Problem
Statement
How can we utilize
multiple models and
multiple accelerators
while optimizing for
energy/latency?

- How do we know when
we have chosen
correctly?

- When do we switch
between models or
accelerators?

MINES.EDU

Challenges
1. We need to determine

context at runtime.
2. We need to assess the

current accuracy of models
based purely on runtime
context.

3. How many models we can
load at once is restricted by
the shared memory system.

4. We need to choose models
without true knowledge of
their prediction strength.

Where are we within our
environment?

How does model X perform
while the drone is here?

Shared memory limits individual capacity

MINES.EDU

Related Work

MINES.EDU

Summary Efficient edge object detection
Multi
Model

Multi
Accelerator

MINES.EDU

Related Work
• Continuous Detection

• Offloading
• Skipping frames
• Efficiency optimizations

• DNN inference for
multi-accelerators

• Optimized schedules
• Subgraphs

• Multi Model Detection
• Multi-model scheme for pose

prediction

MINES.EDU

Energy Efficient Detect-and-Track
- Pros:

- Reduces energy
usage by reducing
number of object
detection DNN
inferences.

- Cons:
- Adds an additional

DNN inference for
each frame

- Processes
asynchronously &
skips frames

M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection on mobile devices without offloading,” in ICDCS’20

MINES.EDU

Multi-Model Inference

- Pros:
- Multiple DNNs

yield a better
data spread
compared to a
single model

- Cons:
- Need to perform

multiple
inferences per
frame.

G. Shi, Y. Zhu, J. Tremblay, and et al., “Fast uncertainty quantification for deep object pose estimation,” in ICRA’21

MINES.EDU

Methodology

MINES.EDU

Overview of SHIFT

• Model Characterization
• Identify key traits of each

model
• Construct confidence graph

• SHIFT Scheduler
• Context detection
• Heuristic scheduler

• Dynamic Model Loader
• LRU model deallocation

strategy

MINES.EDU

Model Characterization
Identified Model Traits
• Accuracy
• Confidence Score
• Latency
• Energy
• Model Loading Cost

• Time
• Memory
• Energy

Prediction Methodology Goals
• Need to associate models

offline without extra data
• Require fast predictions
• Deterministic model

decisions
• Stable predictions

MINES.EDU

Confidence Graph
1. Create node for every model on every accelerator at every bin
2. Run every model on every accelerator on every image in

validation set
3. Create edge weights from results of step 2
4. Process weights in neighborhood

a. Neighborhood is defined as the one-hop adjacent nodes
5. Traverse with BFS
6. Aggregate common models for final predictions

Yields ahead-of-time static predictions, O(1)

MINES.EDU

Confidence Graph - Nodes

Create a node in the graph for each model for each portion of the
discrete confidence intervals

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3

MINES.EDU

Confidence Graph - Performance

Run each available model on each accelerator on each image of the
validation set

images model1 model2 model3 model4
image1 0.1 0.0 0.19 0.36
image2 0.39 0.64 0.58 0.55
image3 0.63 0.46 0.84 0.48
image4 0.76 0.66 0.86 0.58
image5 0.81 0.76 0.97 0.57
image6 0.93 0.84 0.91 0.86
image7 0.75 0.95 0.52 0.91
image8 0.53 0.4 0.3 0.64
image9 0.75 0.55 0.72 0.83
image10 0.95 0.78 0.71 0.96
image11 0.92 0.71 0.79 0.64
image12 0.66 0.36 0.42 0.48
image13 0.82 0.73 0.63 0.7
image14 0.61 0.51 0.83 0.43
image15 0.62 0.74 0.35 0.75
image16 0.72 0.97 0.74 0.58
image17 0.61 0.58 0.84 0.44
image18 0.93 0.87 0.68 0.83
image19 0.5 0.38 0.79 0.35
image20 0.52 0.28 0.5 0.54

MINES.EDU

Confidence Graph - Edges

Increment the edge weight between two nodes if the
model/confidence interval pairs are both present on the image

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

20 19
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1

MINES.EDU

Confidence Graph - Weights

Clamp to a percentile, cull weak edges, normalize, and invert edge
weights such that an edge weight has a lower is better standard

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

20 19
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1

MINES.EDU

Confidence Graph - Weights - Clamp

80th percentile of [1, 3, 5, 13, 15, 16, 19, 20] is 17.8

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

20 19
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1

MINES.EDU

Confidence Graph - Weights - Clamp

80th percentile of [1, 3, 5, 13, 15, 16, 19, 20] is 17.8

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1

MINES.EDU

Confidence Graph - Weights - Cull

Edges with a single connection are too “noisy”

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2 MobilenetV2_GPU_0.3
13

1

MINES.EDU

Confidence Graph - Weights - Cull

Edges with a single connection are too “noisy”

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2
13

MINES.EDU

Confidence Graph - Weights - Normalize

Divide all edge weights by the maximum weight in the neighborhood

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

17.8 17.8
15

516
3

MobilenetV2_GPU_0.2
13

MINES.EDU

Confidence Graph - Weights - Normalize

Divide all edge weights by the maximum weight in the neighborhood

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

1.0 1.0
0.84

0.280.89
0.17

MobilenetV2_GPU_0.2
0.73

MINES.EDU

Confidence Graph - Weights - Invert

Invert edges by subtracting edge weight from 1.0

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

1.0 1.0
0.84

0.280.89
0.17

MobilenetV2_GPU_0.2
0.73

MINES.EDU

Confidence Graph - Weights - Invert

Invert edges by subtracting edge weight from 1.0

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

0.0 0.0
0.16

0.720.11
0.83

MobilenetV2_GPU_0.2
0.27

MINES.EDU

Confidence Graph - Final Edge Weights

Final edge weights after the post processing stage. Post processing
includes outlier removal, clamping, and inversion of weights.

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

0.0 0.0
0.16

0.720.11
0.83

MobilenetV2_GPU_0.2
0.27

MobilenetV2_GPU_0.3

MINES.EDU

An inference of YoloV7 on GPU with a
confidence score between 0.1 and 0.2
yields:

Confidence Graph - BFS

Model Accelerator Accuracy Cost Number of Nodes

YoloV7 DLA 0.4 0.0 1

YoloV7 VPU 0.4 0.0 1

YoloV7 Tiny GPU 0.3001 0.002 2

YoloV7 Tiny DLA 0.3 0.73 1

MobilenetV2 GPU 0.3 0.41 1

MINES.EDU

Confidence Graph - BFS

Perform BFS traversal

YoloV7_GPU_0.1

YoloV7tiny_DLA_0.1

YoloV7tiny_VPU_0.2

YoloV7_DLA_0.1 YoloV7tiny_GPU_0.1

YoloV7tiny_GPU_0.2

YoloV7_VPU_0.1

0.0 0.0
0.16

0.720.11
0.83

MobilenetV2_GPU_0.2
0.27

MINES.EDU

Confidence Graph - BFS

Perform BFS traversal

YoloV7_GPU_0.1:
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72
● YoloV7tiny_VPU_0.2, 0.83

MINES.EDU

Confidence Graph - BFS

Cut neighbors outside of the cost threshold, use 0.75 here

YoloV7_GPU_0.1:
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72
● YoloV7tiny_VPU_0.2, 0.83

MINES.EDU

Confidence Graph - BFS

Cut neighbors outside of the cost threshold, use 0.75 here

YoloV7_GPU_0.1:
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72

MINES.EDU

Confidence Graph - BFS - Aggregate

Aggregate model accuracies with a weighted average

YoloV7_GPU_0.1:
● YoloV7_DLA_0.1, 0.0
● YoloV7_VPU_0.1, 0.0
● YoloV7tiny_DLA_0.1, 0.11
● YoloV7tiny_GPU_0.1, 0.16
● MobilenetV2_GPU_0.2, 0.27
● YoloV7tiny_GPU_0.2, 0.72

MINES.EDU

Confidence Graph - BFS - Aggregate

Aggregate model accuracies with a weighted average
Add the mean accuracy for the model in the range

YoloV7_GPU_0.1:
● YoloV7_DLA_0.1, 0.0, 0.4
● YoloV7_VPU_0.1, 0.0, 0.4
● YoloV7tiny_GPU_0.1, 0.16, 0.3
● YoloV7tiny_GPU_0.2, 0.72, 0.35
● YoloV7tiny_DLA_0.1, 0.11, 0.3
● MobilenetV2_GPU_0.2, 0.27, 0.3

MINES.EDU

Confidence Graph - BFS - Aggregate

Compute a weighted average, first transform weights using:
w = max(((cost_threshold - w) / cost_threshold) ** 2, 1e-8)

YoloV7_GPU_0.1:
● YoloV7_DLA_0.1, 0.0, 0.4
● YoloV7_VPU_0.1, 0.0, 0.4
● YoloV7tiny_GPU_0.1, 0.16, 0.3
● YoloV7tiny_GPU_0.2, 0.72, 0.35
● YoloV7tiny_DLA_0.1, 0.11, 0.3
● MobilenetV2_GPU_0.2, 0.27, 0.3

MINES.EDU

Confidence Graph - BFS - Aggregate

Compute a weighted average, first transform weights using:
w = max(((cost_threshold - w) / cost_threshold) ** 2, 1e-8)

YoloV7_GPU_0.1:
● YoloV7_DLA: [(1.0, 0.4)]
● YoloV7_VPU: [(1.0, 0.4)]
● YoloV7tiny_GPU: [(0.62, 0.3), (0.001, 0.35)]
● YoloV7tiny_DLA: [(0.73, 0.3)]
● MobilenetV2_GPU: [(0.41, 0.3)]

MINES.EDU

Confidence Graph - BFS - Aggregate

Compute the estimated accuracy with a weighted average

YoloV7_GPU_0.1:
● YoloV7_DLA: [(1.0, 0.4)]
● YoloV7_VPU: [(1.0, 0.4)]
● YoloV7tiny_GPU: [(0.62, 0.3), (0.001, 0.35)]
● YoloV7tiny_DLA: [(0.73, 0.3)]
● MobilenetV2_GPU: [(0.41, 0.3)]

MINES.EDU

Confidence Graph - BFS - Aggregate

Compute the estimated accuracy with a weighted average

YoloV7_GPU_0.1:
● YoloV7_DLA: acc: 0.4
● YoloV7_VPU: acc: 0.4
● YoloV7tiny_GPU: acc: 0.30008
● YoloV7tiny_DLA: acc: 0.3
● MobilenetV2_GPU: acc: 0.3

MINES.EDU

Confidence Graph - BFS - Aggregate

Now we have the static accuracy of all models on all accelerators
given one model on an accelerator with a certain confidence score.
These predictions can be pre-computed and stored in a hashmap
for O(1) accuracy predictions.

YoloV7_GPU_0.1:
● YoloV7_DLA: acc: 0.4
● YoloV7_VPU: acc: 0.4
● YoloV7tiny_GPU: acc: 0.30008
● YoloV7tiny_DLA: acc: 0.3
● MobilenetV2_GPU: acc: 0.3

MINES.EDU

SHIFT Scheduler
• Set of energy/accuracy/latency

knobs for user adjustment
• Computes image similarity

across entire image and
detected bounding boxes to
determine if context is
changing

• Minimizes perceived cost

MINES.EDU

Dynamic Model Loader
• Models occupy memory
• SoCs utilize shared memory

(commonly)
• Too many models allocated will

lead to programs being killed
• Deallocate models using LRU

to save memory

MINES.EDU

Results

MINES.EDU

Results - All Models

YoloV7 on GPU achieves highest success rate
across our tests. This model serves as our baseline

MINES.EDU

Scenario 1 - Simple

MINES.EDU

Scenario 2 - Slightly more complex

MINES.EDU

Scenario 3 - Complex

MINES.EDU

Scenario 4 - Simple Indoor

MINES.EDU

Overall Methodologies

Maintained good results with fewer than half of the swaps and
fewer allocated models than oracle methods.

MINES.EDU

Sensitivity Analysis

1. Knobs have correct relationship relative to each metric
2. Momentum (filtering results) does not have significant impact
3. Reducing cost threshold (using closer nodes only) has positive

impacts

MINES.EDU

Conclusions

7.5x Energy usage improvement
2.8x Latency improvement
0.97x Accuracy performance
vs. YoloV7 on GPU

MINES.EDU

Thank you!
Any questions?

