
PMOTHS: Efficient Multi-Object Tracking for
Multi-Accelerator Mobile Systems

Abstract
Multi-object tracking (MOT) is a critical task in computer

vision, essential in various fields of mobile computing such as
sensor networks, smartphones and surveillance. It involves
detecting and tracking multiple objects over time and mak-
ing informed decisions. State-of-the-art MOT systems rely
on deep neural networks for object detection, which can be
computationally intensive and energy-consuming, especially
in performance-limited and energy-efficient mobile comput-
ing environments. This paper addresses the challenge of im-
proving MOT execution efficiency on heterogeneous system-
on-chips (SoC) that integrate multiple accelerators, includ-
ing GPUs, and domain-specific accelerators.

We introduce PMOTHS, a Priority-basedMulti-object Track-
ing approach for Heterogeneous SoCs. Our method leverages
a novel multi-model, multi-accelerator execution strategy to
improve latency and energy consumption without compro-
mising critical operational accuracy. By identifying the loca-
tions of high-priority and low-priority objects in the frame,
PMOTHS can dynamically allocate computational resources
to balance the detection of objects across multiple accelera-
tors and sub-regions of the frame. This approach significantly
reduces the size of input data and allows energy-efficient ac-
celerators to be utilized. Evaluations on the MOT17 dataset
demonstrate a reduction of up to 2.2x in latency, 3.8x in en-
ergy, and 2.2x in power draw, while preserving more than
95% of recall and 99% of detection accuracy, showcasing the
effectiveness of PMOTHS in real world scenarios.
1 Introduction
Multi-object tracking (MOT) is a principle computer vi-

sion task utilized in various fields of mobile computing, in-
cluding sensor networks, augmented reality, smartphones,
autonomous vehicles, surveillance, and robotics [7, 12, 20,
22, 23]. It involves identifying and following multiple objects
within a scene over time, which is essential to understand dy-
namic environments and making informed decisions. MOT
systems typically consist of two main components: detection,
which uses deep neural networks (DNNs) to identify objects
in individual frames, and tracking, which associates these de-
tections across frames to maintain consistent object identi-
ties [11, 33–36, 38]. In this work, we focus on real-time MOT
on energy-efficient and performance-limited computing en-
vironments.

Many mobile systems rely on multi-accelerator, i.e., het-
erogeneous, system-on-chips (SoC) to efficiently execute var-
ious workloads such as MOT, rendering, video analytics,

facial recognition, or other DNN-based tasks [5]. In addi-
tion to CPUs and general purpose GPUs, these SoCs embed
domain-specific processors such as deep learning accelera-
tors (DLA) and programmable vision accelerators (PVA) [24].
Domain-specific accelerators are capable of running a spe-
cific set of functions in the domain much more efficiently,
i.e., less power spent for a unit of computation, making them
highly favorable for energy- and power- constrained plat-
forms. Figure 1 shows the breakdown of the total time spent
processing a single frame with a MOT pipeline using a DNN-
based object detector. The tracking algorithm is run on the
CPU and accounts for only 14.5% of the frame processing;
whereas the DNN model for detection, although it runs on
the much faster GPU, takes the remainder of the 26 ms ex-
ecution time, while consuming around 95% of all the en-
ergy spent. An important realization is that a mobile system
usually has other GPU-based workloads, such as rendering,
video encoding/decoding, video analytics, or facial recogni-
tion. scheduled to run in parallel or in series with the MOT
pipeline [12, 16, 22]. As such, focusing on detection within a
MOT pipeline has the greatest potential to improve power
efficiency and reduce overall system latency.

In this paper, we explore the following question:How could
we improve MOT execution efficiency by reducing either the
latency or energy spent per frame, without sacrificing critical
requirements of operational accuracy? In an attempt to find
an answer, we come up with two important observations
regarding MOT execution on multi-accelerator mobile SoCs:
(i) A comparison of inference time, power draw and energy
consumption of the YOLOX [11] object detection (OD) model
is shown in Figure 2. We run various parameter sizes of the
YOLO model on the GPU and DLA of the popular NVIDIA
Orin AGX mobile platform. Using DLA, the total energy
spent on inference can be almost halved at the cost of a 1.42x
increase in inference latency. Importantly, the GPU and DLA

0 5 10 15 20 25
Time (milliseconds)

D
et

ec
t

Tr
ac

k

4.2 ms 22.0 ms

3.8 ms

Preprocessing Time
Inference Time
Tracking Time

Detection Energy
Tracking Energy

0.0 0.2 0.4 0.6 0.8
Energy (Joules)

0.90 J

0.04 J

Figure 1: Comparison of the runtimes of YOLOv10 [33] M
with 1280x1280 input size andByteTrack [38] on anOrinAGX
64GB using an off-the-shelf single-threaded implementation.

, ,

GPU DLA GPU DLA GPU DLA GPU DLA0

2

4

6

8

10

In
fe

re
nc

e
Ti

m
e

(m
s) Inference Time (ms)

Energy (J)
Power Draw (W)

0.00

0.05

0.10

0.15

0.20

0.25

En
er

gy
 (J

)

0

10

20

30

40

Po
we

r D
ra

w
(W

)

nano tiny small medium

Figure 2: Comparison of GPU vs. DLA inference metrics on
NVIDIA Orin AGX 64GB. Each version of YOLOX (nano, tiny,
small, medium) uses the default input size as defined by the
maintainers being 416, 416, 640, and 640 respectively. DLA
based models use int8 precision with calibration performed
using the COCO17 validation set.

can be run concurrently to enable collaborative execution
and effectively parallelize DNN-based workloads. Current
MOT approaches do not consider collaborative execution, be-
cause the execution pipeline is not parallel. Using multiple ac-
celerators would provide performance and energy benefits
if there were a method to parallelize the MOT pipeline.
(ii) While the state-of-the-art practice is to feed the entire
camera input to the detection model, the portion of the input
image that is large enough to perform accurate OD may be
much smaller than the entire input. Moreover, not all tracked
objects may be of critical importance. Figure 3 depicts the
smallest region that contains bounding boxes of the most
important objects in red, e.g., cars or pedestrians, for a va-
riety of videos in the MOT17 dataset [23]. Additionally, the
regions containing objects of lesser importance, shown in
blue, indicate situations where detection results matter less,
such as when objects are stationary or far from the path of
travel. The region containing all objects is shown in green
and represents a typical region-of-interest (ROI) [3] based
approach. Figure 4 shows a heatmap of the average number
of objects per frame in various MOT sequences. In most sce-
narios, there are long sequences of frames with large empty
regions which do not contain any objects. Thus, a signifi-
cant amount of computational cycles is wasted by process-
ing these regions. Processing only the relevant data from the
sequence can save latency and energy. Figure 5 expands on
this and shows how the occurrence of objects in real-life se-
quences is often cyclic, as objects move in and out of view.
Notably, there are spikes in the amount of coverage when

MOT17-09 MOT17-13MOT17-10MOT17-02

Figure 3: MOT17 scenarios and corresponding example re-
gions of high priority (red), low priority (blue), and overall
region-of-interests (green) detection regions.

Figure 4: Average number of intersecting objects for each
gridcell on a frame-by-frame basis for MOT sequences. A 10
by 10 grid a pixel size determined by the frame size is used
to compute the object intersections.

new objects appear far away from the existing object cluster,
demonstrating the importance of being context-aware and
not focusing only on existing detections. In particular, MOT
scenarios 02, 09, 10, 11, and 13 have significant portions of
the overall sequence where only a subset of a frame is suffi-
cient to detect all the objects with the same accuracy that full
frame processing would provide. Meanwhile, MOT scenar-
ios 04 and 05 (the latter is not shown) represent sequences in
which the spatial information and context of the objects can-
not be used to optimize performance. Most of the time, only
a small portion of the input contains all the relevant informa-
tion to perform detection on the critical objects of interest.

Figure 5: Percentage of each frame which is occupied by ob-
jects. The object coverage is computed by taking the bound-
ing box of all object bounding boxes, thus this coverage will
be an overestimate including empty space between objects.

PMOTHS: Efficient Multi-Object Tracking for Multi-Accelerator Mobile Systems , ,

By separating each frame into multiple regions, we can dis-
tribute the detection for a single frame across several accelera-
tors, enabling parallel execution and potentially improving the
overall efficiency of the system. This strategy is based on three
key observations: objects within a frame are often clustered;
the clusters tend to cover only a fraction of the full image;
and the spatial distribution of objects can change rapidly as
new objects enter or leave the scene. However, several chal-
lenges arise with this approach.
C1: Determining how to efficiently divide frames into re-

gions while minimizing computational overhead.
C2: Identifying when new objects appear outside the es-

tablished regions.
C3: Estimating current DNN accuracy based only on the

limited available context.
C4: Managing multi and concurrent DNN execution across

multiple accelerators without additional overhead.
Based on these observations and challenges we propose a
new approach to improve the efficiency of MOT execution.

We introduce PMOTHS, a Priority-basedMulti-object Trac-
king approach for Heterogeneous mobile SoCs. We devise a
novel, multi-model, multi-accelerator execution methodol-
ogy that significantly improves the latency and energy con-
sumption of OD in MOT pipelines. PMOTHS achieves this
by treating user-defined high-priority (HP) and low-priority
(LP) classes of objects separately. During runtime, we pro-
cess the region of the frame containing all HP objects using
the original detection model (or an equivalent) on a reduced
input to improve latency. For the remainder of the frame, we
employ faster and/or lower-accuracy models, which can run
in parallel on another accelerator. The detection accuracy
for LP objects is lower-bounded by a user specified knob.

The contributions of our work are as follows:
• We propose a novel MOT approach that improves latency,
energy-consumption, and power-draw in mobile platforms
by reducing the size of the input data without sacrificing
the detection accuracy for high-priority objects.
• We efficiently split captured frames into high- and low-
priority regions according to a set of user defined class
priorities.
• Weutilize energy-efficient accelerators to detect low-priority
objects collaboratively while meeting a user-determined
detection accuracy threshold.
• We present a unique methodology for merging the output
of multiple object detection models and derive the current
context and assessment of the model performance.
• We integrate a very-low-overhead scheduler capable of
handling the large state-space of possible model selections
and accelerator mappings.
• We evaluate the efficiency of our approach on the industry-
standard MOT17 dataset and show a reduction of up to

2.2x in latency, 3.8x in energy, and 2.2x in power draw,
while operating at a higher recall and detection accuracy
than 95% and 99%, respectively.

2 Related Work
Multi-object tracking (MOT): State-of-the-art MOT solu-
tions [9, 17, 25, 26, 30, 35, 36, 38] often utilize a two-stage
detection process followed by tracking, with a single-pass
DNN using a GPU as the primary detector. The tracking por-
tion can either consist of traditional CPU-based implementa-
tions to label individual detections with unique IDs [17, 26]
or include additional DNN inferences to improve tracking
accuracy [9, 30]. Recently, ByteTrack [38] demonstrates that
optimizing the underlying detection algorithm can increase
tracking accuracy. However, its detection model relies on a
heavyweight DNN, specifically a custom YOLOXmodel with
an input size of 1440×800. All such MOT works [9, 17, 25, 26,
30, 38] do not consider the role of dynamically allocating de-
tection resources and how they can be augmented, instead
treating the detection stage as unchangeable during runtime.
PMOTHS instead focuses on improving detection latency while
utilizing existing tracking algorithms.
Concurrent DNN execution: Several studies [4, 13, 27, 32]
focus on optimizing the concurrent execution of DNNs. Hax-
CoNN [4] optimizes the throughput of multiple DNNs in a
layer-by-layer fashion across multiple accelerators while ac-
counting for the shared-memory slowdown. Although this
method increases throughput, the layer-by-layer schedul-
ing process can be easily interrupted on systems running
many tasks, such as mobile devices. CARin [27] optimizes
service-level objectives in multi-DNN workloads. Similar to
Hax-CoNN [4], CARin [27] considers multiple accelerators,
but instead of utilizing fine-grained techniques to optimize
throughput, it focuses on optimizing high-level objectives
such as fairness and system-level throughput. While Hax-
CoNN [4] focuses on fine-grained optimizations, CARin [27]
targets multi-application level objectives, which may intro-
duce more overhead than required to enable concurrent uti-
lization within a single application. PMOTHS considers con-
current execution, but, contrary to other methods, does not re-
quire fine-grained modeling or the overhead of considering ar-
bitrary workloads throughout the system.
Scheduling for latency, energy, and accuracy: Schedul-
ing DNN workloads to improve latency, energy efficiency,
or accuracy has been an open research area for more than a
decade [1, 2, 5, 10, 19, 28]. BigLittle [28] proposes using ei-
ther a large or small classifier, running the small classifier
on every frame but activating the large classifier based on a
confidence score threshold to save energy and minimize la-
tency. This approach lacks fine-tuned flexibility in selecting
which models to use. Additionally, in continuous scenarios,
it may incur high penalties from repeatedly performing two

, ,

inferences. NestDNN [10] focuses on splitting a single DNN
model into multiple subgraphs and pruning such graphs to
balance accuracy, latency, and energy trade-offs. This ap-
proach requires significant offline resources, demands that
users have fine-grained knowledge of the detection mod-
els, and assumes that training data is accessible to the user.
PMOTHS, instead of focusing on improving concurrent exe-
cution or latency through advanced low-level methodologies,
demonstrates that system-level scheduling, scalable input sizes,
and input partitioning are sufficient to manage multi-DNN
inference schemes while accounting for additional computa-
tional requirements in real-world scenarios.
Context-aware DNN Inference: Only a small set of stud-
ies [6, 29] offer context-aware approaches to enhance the use
of DNN models. CACTUS [29] splits the classification into
many smaller problems by creating a set of micro-classifiers,
where each classifier handles a subset of classes. The infer-
ence time is minimized by identifying the context of the cur-
rent image and performing only a few micro-classifications.
However, this method introduces high complexity during
context changes and requires custom training schemes. Fur-
thermore, since CACTUS [29] is designed for classification
models, context identification is strictly tied to the entire
output and image, meaning that when context changes oc-
cur, the methodology must run additional models. SHIFT [6]
focuses on switching between different DNNs at runtime
based on the confidence score output, as well as the differ-
ences between frames and detected bounding boxes. SHIFT
switches between DNN families (e.g., YOLO, SSD) to exploit
non-monotonic latency/accuracy trade-offs. However, it is
limited to single-class and single-object detection scenar-
ios, which means it does not generalize to other datasets.
PMOTHS reduces runtime latency by scaling the input size
based on the spatial context of object detections and can con-
sider more than a single-class / single-object scenario during
context identification.
Region-of-Interest for Object Detection:Methodologies
using a system-level region-of-interest (ROI) to constrain
OD typically rely on manual or domain-specific automated
computer vision algorithms [8, 37]. In FlexPatch [37], an ag-
gregated image of known regions with detections and re-
gions that may contain detections is created to reduce com-
munication time to the server running OD. The algorithm
for determining candidate regions is computationally expen-
sive and limits the usability of this method in applications
without offloading. In Dhonde [8], a YOLO-based DNN is
used to assess what items a customer is purchasing at a self-
checkout kiosk. An ROI region is determined based on addi-
tional DNN inferences to reduce the amount of data passed
to the primary detection model, enabling more accurate in-
ference. However, requiring additional DNN inferences sig-
nificantly increases overall latency, restricting applications

Feature

Related Work

H
ax
Co

N
N
[4
]

CA
Ri
n
[2
7]

Bi
gL

itt
le
[2
8]

N
es
tD

N
N
[1
0]

CA
CT

U
S
[2
9]

SH
IF
T
[6
]

Fl
ex
Pa
tc
h
[3
7]

PM
O
TH

S

Context Aware ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Accuracy Predictions ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Concurrent DNNs ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Non-GPU Accelerators ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Object Detection ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

No Additional Training ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

ROI Focusing ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Low Overhead ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

Table 1: Comparison of the features offered by related works.

to those with offloading capability or substantial computa-
tional resources. PMOTHS utilizes a generic automatic ROI-
finding method that does not require additional computation,
operates solely on existing OD outputs, and does not require
additional runtime input, unlike previous methods.
Table 1 provides an overview of the features offered by

the most relevant works and PMOTHS: (i) the capability to
detect contextual information embedded in the input data
stream, (ii) the ability to predict accuracy as a metric in their
methodology, (iii) concurrent execution of DNNs, (iv) utiliza-
tion of domain-specific accelerators, (v) targeting object de-
tection workloads, (vi) no requirement for additional train-
ing, pruning, or fine-tuning to achieve performance, (vii) the
ability to target specific data within an input stream by uti-
lizing ROIs, and (viii) a focus on low runtime overhead for
computation without offloading. Safe and efficient operation
of MOT pipelines with an optimized detection stage requires a
holistic consideration of all these features. To the best of our
knowledge, only PMOTHS achieves this goal.

3 Proposed Approach: PMOTHS
PMOTHS relies on four main components to enable a

priority-based MOT scheme and save latency, power, and
energy without losing accuracy on the HP objects: (i) High
and low priority splitting algorithm which enables PMOTHS
to split a single frame into parallel regions with varying ac-
curacy goals, (ii) the frame packing algorithm which enables
low priority objects to be represented with less data, (iii) ac-
curacy and latency models to predict which model to use for
LP and HP detection, and (iv) the runtime scheduler which dy-
namically maps models to accelerators (i.e., GPU and DLA)
so that the accuracy constraints are met while minimizing
overall runtime, i.e., frame latency. An overview of the data
flow and components is given in Figure 6.
3.1 Identification of High Priority Regions

High priority regions are determined based on a set of user
defined priority class labels. For a set of detections on the
entire image, the detections with class labels in the priority
set are isolated. Then, the bounding box encasing all isolated

PMOTHS: Efficient Multi-Object Tracking for Multi-Accelerator Mobile Systems , ,

Framepacking

Scheduler

Region
Identification

LP Region

HP Region
Packed
Region

Execution Pipeline

Selected
Model(s)

New Detections

Accuracy
Assessment Est. Acc. Frames 0…N

Figure 6: Overview of the PMOTHS setup and how each com-
ponent connects. Region identification, framepacking, accu-
racy/latency modeling, and scheduling are outlined in Sec-
tion 3.1, Section 3.2, Section 3.3, and Section 3.4 respectively.

detections is generated. This new bounding box is used as
the HP region for the next frame. The remainder of the frame
is the LP region and is processed further by the frame pack-
ing algorithm described next in Section 3.2. Since MOT is de-
signed for continuous frame sequences, there is an implicit
assumption that objects will not significantly change position
frame-to-frame. This assumption is used in MOT algorithms
such as SORT, DeepSORT, and ByteTrack [35, 36, 38]. Thus,
when an HP region is identified in the current frame, it will
still be present in the next frame. A small amount of padding
is added to account for object movement between frames to
ensure objects do not get cut off. This is a standard practice
for methodologies that utilize regions of interest (ROIs) in an
OD context [8, 37]. By assessing the priority based on a set
of user-defined class labels, the relevant HP region can be de-
termined with almost no overhead and requires only a single
iteration over the set of detections, addressing challenge C1.
It is still possible that the LP region will contain objects

of the HP class in one of these conditions: 1) the HP/LP
model cannot detect the object, 2) the HP model loses detec-
tion of the object and the object moves to LP region, 3) the
movement of camera results in new objects appearing in the
frames, and 4) objects move into the scene when camera is
static. In such cases, the LP model will detect objects with HP
classes, and the HP area will be redefined to include them.

All objects in the HP region, regardless of their class, will
be detected by theHPmodel. Therefore, corresponding pixels
in the HP region should be excluded from the LP model’s in-
puts to save computational resources. A naive solution to this
problem is to black out the HP region and then perform infer-
ence on the remaining regions. By this way, duplicate detec-
tions do not need to be filtered on the CPU side post inference,
providing a potential optimization. However, this method
wastes computation since the LP model will still process the
blacked-out region. A more efficient solution is to create a
new image for the LP region which has been reorganized to
completely exclude the HP region. This method would have
three benefits; i) there will be no wasted computation, ii) the
data size will be smaller, allowing for a smaller input size or

less sub-sampling during inference, and iii) we will be able
to use the DLA to parallelize computation and save energy.

In addition to reorganizing the data in the rest of the frame,
we could further improve the execution of the LP model. As
observed in Figures 4 and 5, most of a frame can be devoid
of objects. For example, in the MOT17-13 scenario, the max-
imum coverage observed is 60%, while the average coverage
is significantly lower. Since most of each frame is empty, ex-
cluding regions without objects can allow reduced model
input size and lower latency.

Based on the insights detailed above, we introduce a novel
frame packing algorithm to efficiently process LP regions.

3.2 Frame Packing for Low Priority Regions
Our frame packing algorithm is based on simulated an-

nealing and 2D bin packing: First, regions that are not likely
to contain detectable objects are removed, reducing the over-
all data size. Then, regions are bin-packed into a new image,
minimizing the difference between the height and width,
which in turn minimizes distortion and resolution loss dur-
ing preprocessing for the OD DNN.
Formulation: To reduce the computational complexity of
determining the importance of regions of the input stream,
a predetermined grid is maintained, where each cell maps
to a fixed square region of the frame. Each grid cell tracks
the number of detections within itself. Once detections are
generated for a frame, each cell of the grid has its counter
incremented by the number of objects that intersect that
cell. All cells that did not have any intersecting detections
have their counter decremented. Using this simple counting
methodology, the relevance of each cell can be determined.
The simulated annealing algorithm assigns a probability to
include the cell using the current frame number and the
detection counter. The probability is defined in Equation 1,

𝑃𝑒𝑥𝑝𝑙𝑜𝑟𝑒 = min
{
1,max

{
𝑝min, 𝑒

−𝛼𝑐 +min
{
1,

𝑑

𝑐 + 1

}}}
(1)

where 𝑐 is the global frame counter, 𝑑 is current detection
counter for the cell, 𝛼 is the cooling rate, and 𝑝𝑚𝑖𝑛 is the
minimum probability. The detection tracking counter and
the frames captured since initialization provide enough con-
textual information to accurately identify regions that can
be excluded from the LP model inference. Importantly, it is
possible that no cells are selected by simulated annealing,
meaning that no additional inference pass is required for
that frame and only the HP region gets processed.
Once a set of grid cells has been generated by simulated

annealing, the corresponding image regions represented by
these cells are packed into a new image. Since the cells are
on a structured grid pattern, some of the cells can be grouped
together to form connected components. By forming groups
of cells, more spatial contextual information can be pre-
served. This prevents objects that span multiple cells from

, ,

Algorithm 1 Frame Packing via Shelf Bin Packing
Input: Image 𝐼 , Groups 𝐺
Output: Packed Image 𝑃
1: if 𝐺 = ∅ then
2: return Empty Image
3: end if
4: 𝐺 ← sort(𝐺) ⊲ Sort descending by size
5: 𝑡𝑠 ← ceil(sqrt(sum(size(𝑔)∀𝑔 ∈ 𝐺))) ⊲ Target size
6: 𝑆 ← ∅ ⊲ Set of shelves
7: for all 𝑔 ∈ 𝐺 do
8: for all 𝑠 ∈ 𝑆 do
9: if 𝑔width ≠ 𝑠width ∨ 𝑔height + 𝑠height > 𝑡𝑠 then
10: continue
11: end if
12: 𝑠 ← 𝑠 ∩ {𝑔}
13: break
14: end for
15: 𝑆 ← 𝑆 ∪ {𝑔}
16: end for
17: ℎ ← max(𝑠height∀𝑠 ∈ 𝑆)
18: 𝑤 ← sum(𝑠width∀𝑠 ∈ 𝑆)
19: 𝑃 = 𝑖𝑚𝑎𝑔𝑒 [ℎ,𝑤]
20: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 0
21: for all 𝑠, 𝑠𝑤 , 𝑠ℎ ∈ 𝑆 do
22: for all 𝑖 ∈ 𝑠ℎ do
23: for all 𝑗 ∈ 𝑠𝑤 do
24: bbox← 𝑠 [𝑖 × 𝑠𝑤 + 𝑗]bbox ⊲ Get bbox from cell
25: bboxnew ← getBbox(𝑖, 𝑗) ⊲ Get new bbox
26: 𝑃 [bboxnew] ← 𝐼 [bbox] ⊲ Update image
27: end for
28: end for
29: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 + 𝑠𝑤
30: end for
31: return 𝑃

being split into smaller pieces and not being detected. To
make re-packing of the groups easier, only connected com-
ponent groups which are dense, i.e., are fully filled rectan-
gles, are considered. Since groups of cells will have many
different shapes, forming a new image from these groups is
NP-Complete since it can be represented as 2D bin packing
problem [15]. As such, we use the shelf-based 2D bin pack-
ing heuristic algorithm with a minor modification to attempt
to pack the regions into a square image. A square input is
important, as the standard configurations of object detection
models such as YOLO [11, 33] are trained on square images.
Algorithm: The procedure for the bin-packing algorithm is
presented in Algorithm 1. The input image 𝐼 is the current
frame from the sequence and the groups 𝐺 is the set of
all connected component groups or standalone cells. The
algorithm works as follows: (1-3): If there are no groups,
return an empty image. (4): Sort the groups by descending
size to pack the largest groups first. (5): Define the target
size of the ideal square image. (6): Define the set of shelves.

Figure 7: Analysis of frame packing reduction ratio, latency,
and the maximum recoverable accuracy using the baseline
YOLOv10 M 1280x1280 DNN on the MOT17-13 sequence.

(7-16): For all groups, attempt to greedily place the group
on the first shelf with the same width and available height,
otherwise create a new shelf. (17-19): Create the new image
based on the shelf sizes. (20-31): Iterate over each shelf, then
iterate over each cell –all exist since width matching and
dense groups were required–, and copy each cell from 𝐼 into
𝑃 to fill in the new image.
Once the new LP region image is formed, it is passed to

the LP model for detection. To convert detections from the
packed LP image back to the real frame coordinates, the
bin-packing algorithm saves a 2D set of offsets. Then, each
bounding box is converted to cell coordinates in the packed
image. These cell coordinates are used to get the offset to
transform the bounding box to the original frame.
Verification: In order to verify that the frame packingmethod-
ology is able to keep the relevant regions of the image within
the packed representation, we evaluate its recall against the
baseline model defined in Section 4. The experiment is set
up as follows: 1) the entire frame is given as the input frame
to be packed instead of just a subset; 2) the detections used
to update the grid are the detections of the baseline model
on the entire frame; and 3) the recall of the baseline model
on the packed image is the displayed accuracy. As can be ob-
served in Figure 7, the baseline model can recover most of
the detections while removing up to 40% of the image. The
minimum probability of the annealing function was set to
10% with the grid size to be equal to one tenth of the larger
dimension of the images. A random sampling method was
also created that will sample 75% of the image to be packed.
Both methods utilize the bin packing methodology to cre-
ate the new packed image. As can be observed, the random
methodology does not recover the same accuracy as the an-
nealing based methodology, showcasing sampling cells with
simulated annealing can adapt to the scenario sufficiently
after a small warm-up period. A visual example of the frame-
packing process is presented in Figure 8. As shown, within
300 frames (or 10 seconds), the simulated annealing and bin-
packing algorithms work together to reduce the LP data to

PMOTHS: Efficient Multi-Object Tracking for Multi-Accelerator Mobile Systems , ,

0.17x Data

Figure 8: Comparison of the packed grid cells after blocks
of frames have been processed via simulated annealing. De-
tection results are from the baseline YOLOv10 M 1280x1280
DNN running on the entire image.

be processed to just 7% of the overall image resolution (10%
when accounting for inefficiently packed space). Having such
small input sizes significantly increases the optimization ca-
pability of a parallel inference for LP.

Using fast heuristics to create the LP region for detection,
PMOTHS is able to effectively solve challenge C2.

3.3 Predicting Model Accuracy and Latency
To effectively schedule object detection DNNs at run-

time, an estimation of their accuracy and latency needs to
be modeled beforehand so that quick scheduling decisions
could be made. Ideally, such a model should be built using
ground truths for the best representation of accuracy. How-
ever, ground truth data will not be available for the frames
encountered during runtime, and the closest metric reported
by the DNN execution is the confidence scores, which do
not directly represent the accuracy of the model. To quantify
accuracy, we use the F1 score, the geometric mean between
precision and recall, as the accuracy metric [31]. The higher
the F1 score, the more precise the model and the more ob-
jects the model can recall. During runtime, the only metric
available to quantify accuracy is the confidence score. How-
ever, since the confidence score primarily reflects the cer-
tainty of positive detections, it is an incomplete metric. Con-
sider the case where a model generates high confidence val-
ues but misses many objects. In this scenario, the recall will
suffer significantly, but the precision of the model remains
high. This creates a non-linear relationship which will not
be accurately predicted at runtime. Thus, the F1 score is used
to model the hidden relationship between confidence score,
precision, and recall.
In order to generate runtime F1 score estimates, we de-

velop a 2D setup of linear estimators. For each model, an
estimator is trained to predict the F1 score of itself and ev-
ery other model based on the mean confidence value of the
set of detections on a given frame. To train the estimators,
we use the validation set of the dataset on which the ob-
ject detection DNN was trained. Importantly, the difficulty
of the datasets may be different, i.e., the F1 score distribu-
tion can change depending on whether the DNN is running
on COCO17 [18] images (with which YOLO was trained) or
MOT17 [23] frames (which we use in our experiments). To
account for this, a scaling factor is calculated based on the

Figure 9: On the left and right, respectively: (a) YOLOv10 end-
to-end inference time and (b) normalized F1 score character-
ization for various model variations.

median F1 score that will be used along with the user-defined
knobs in the runtime scheduler, described in Section 3.4.
A visualization of the characterizations for end-to-end

inference time and the F1 score can be found in Figure 9.
As expected, increasing computational resources results in
higher F1 scores. We observe that reductions in parameter
sizes can be offset by proportionally increasing input sizes,
effectively recovering performance. These relationships are
captured by the 2D linear estimator setup, enabling dynamic
runtime adjustments to balance input and parameter sizes.
Using a lightweight set of linear estimators trained to

predict the F1 score of all models from the confidence score of
a single model, PMOTHS is able to predict accuracy without
adding significant latency, hence solving challenge C3.

3.4 Runtime Scheduler
The runtime scheduler determines which models to ex-

ecute for the HP and LP regions. HP regions are always
executed on the GPU, as they are the critical execution
path. Based on the estimated latency, the scheduler decides
whether to execute an LP region on the DLA (in parallel) or
on the GPU (in series), while maintaining a user defined accu-
racy threshold for the LP region. The scheduler accomplishes
this using a combination of offline and online approaches.
Offline: We characterize all possible GPU(HP)+GPU(LP)

and GPU(HP)+DLA(LP) combinations based on the set of all
available OD models. Schedules will be evaluated based on
runtime characteristics including pre-processing, inference,
post-processing, and end-to-end latency.
Online: The scheduler will first generate the HP and LP

regions for each frame using the methods described in Sec-
tion 3.1. Then, the LP regions will be packed into a new im-
age based on the current detection context outlined in Sec-
tion 3.2. Once the HP and LP regions are ready to be detected,
the scheduler uses the routine described in Algorithm 2 to
choose a new schedule of OD models.

The scheduler works as follows: (1-3): If there are no previ-
ous detections or no HP region, do not change the schedule.
(4): Compute the bounding box for the HP region. (5-17): Pre-
dict current F1 scores based on prior detections of the HP
models, then generate a set of possible new candidates for the

, ,

Algorithm 2 Runtime Scheduler
Input: PreviousDetections𝐷 , LP accuracy goal𝛾𝑙𝑝 , Possible Sched-

ules 𝑆 , HP Bounding box 𝐵
Output: New schedule configuration 𝐶 ∈ 𝑆
1: if D = ∅ or 𝐵 is undefined then
2: return 𝐶baseline ⊲ Exit without changes
3: end if
4: Compute HP bounding box area 𝐴hp ← area(𝐵)
5: Compute HP Confidence 𝑐hp ← mean confidence in 𝐷hp
6: Predict HP F1 𝑃ℎ𝑝 ← predict(𝐷 ,𝑐ℎ𝑝)
7: Get baseline scaling ratio 𝑠𝑏 ← 𝑏𝑚/𝐴ℎ𝑝

8: Get median bounding box size 𝑠bbox ← medianSize(𝐷)
9: Compute scale 𝑏𝑠 ← 1.0 − (𝑠bbox/max(imgheight, imgwidth))
10: InitializeMvalid

hp ← ∅
11: for all𝑚 ∈ Mhp do
12: Retrieve model area 𝐴𝑚 ← input area of𝑚
13: Compute scaling ratio 𝑠𝑚 ← 𝐴𝑚/𝐴hp
14: if 𝑠𝑚 ≤ 𝑠𝑏 ∗ 𝑏𝑠 & 𝑃hp [𝑚] ≥ 𝑃hp[baseline] then
15: Mvalid

hp ←Mvalid
hp ∪ {𝑚}

16: end if
17: end for
18: ifMvalid

hp ≠ ∅ then
19: 𝑚new

hp ← min
𝑚∈Mvalid

hp
latency(𝑚)

20: else
21: return 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
22: end if
23: Sfiltered ← {𝑠 ∈ 𝑆 : HP model in 𝑠 =𝑚new

hp }
24: Compute LP Confidence 𝑐lp ← mean confidence in 𝐷lp
25: Predict LP F1 𝑃lp ← predict(𝐷 ,𝑐lp)
26: Initialize Sfinal ← ∅
27: for all 𝑠 ∈ Sfiltered do
28: Retrieve LP model𝑚lp ← LP model in 𝑠

29: if 𝑃lp [𝑚lp] ≥ 𝛾𝑙𝑝 & latency(𝑚lp) + latency(𝑚hp) <

latency(𝑚baseline) then
30: Sfinal ← Sfinal ∪ {𝑠}
31: end if
32: end for
33: if Sfinal = ∅ then
34: return 𝐶baseline
35: else
36: 𝑠new ← min𝑠∈Sfinal latency(𝑠)
37: end if
38: return 𝑠new

HP model: (i) that are estimated to maintain the accuracy of
the baseline model and (ii) that can perform inference on the
HP region without scaling the data down more than the base-
line model multiplied by a scaling factor 𝑠𝑏 . 𝑠𝑏 is the ratio of
the median bounding box dimension to the maximum image
dimension and is used to optimize edge cases where objects
are large relative to total image size. (18-22): If there are mod-
els that can run the HP region with scaling down more than

CPU

GPU

DLA

R F
S

Pre M1 I - Model 1

Preprocess (Pre) Inference (I) Postprocess (P) Framepacking (F) Scheduling (S) Region ID (R)

P

Pre
M2

I - Model 2

CPU

GPU Pre Inference

P

Baseline Processor Utilization

PMOTHS Processor Utilization

26 ms

19 ms

Figure 10: Overview of the processor utilization of the base-
line object detectionDNNpipeline and the proposedPMOTHS
computational pipeline. Computational blocks with a hard-
ware acceleration requirement are shown in orange, CPU-
based computation is shown in grey, and additional compu-
tational for PMOTHS is shown in blue.

baseline, use the fastest one, otherwise use the most accu-
rate of all models. (23): Enumerate possible schedules using
the model determined for the HP region. (24-25): Predict cur-
rent F1 scores based on previous detections, i.e., recalls, from
the LP models, (26-32): Filter out the schedules having an LP
model that does not meet the accuracy threshold. (33-38): If
there are schedules which meet the LP accuracy threshold,
use the fastest one, otherwise use the most accurate schedule.

Once a desired schedule is found, the corresponding detec-
tion algorithms are executed on designated accelerators. The
locations of the detected objects are then fed into the Byte-
Track [38] tracking algorithm. Please note that the sched-
uler falls back to the baseline YOLO model for the entire
frame if it realizes that the HP-LP approach would not pro-
vide latency benefits. By avoiding fine-grained optimizations
and using heuristics tuned to the MOT problem, PMOTHS is
able to effectively consider concurrent schedules and model
swaps at runtime with low overhead, solving challenge C4.
3.5 Summary

The final integration of the PMOTHS methodology is sum-
marized in Figure 6. From this overview figure, the image
is first analyzed to identify the HP and LP regions based on
the HP object classes defined by the user as in Section 3.1.
The HP region is used directly, while the LP region is pro-
cessed using the frame-packing algorithms outlined in Sec-
tion 3.2. Once the frame packing algorithms have processed
the LP region data, if a packed image representation exists, it
is passed to the scheduler along with the existing HP image.
The scheduler then generates a set of accuracy estimates ac-
cording to the linear estimation methodology in Section 3.3.
The scheduler, described in Section 3.4, optimizes the latency
while adhering to the input size and LP accuracy constraints.

Figure 10 shows an example of how the proposed PMOTHS
ODpipeline redistributes the computational load across avail-
able hardware resources. While the baseline approach pro-
cesses the entire frame with a single large pass, our approach

PMOTHS: Efficient Multi-Object Tracking for Multi-Accelerator Mobile Systems , ,

leverages multiple accelerators (GPU for HP and DLA for LP).
The example illustrates that, even though additional compu-
tation is introduced for region identification, frame packing,
and scheduling, the additional overhead is far less than the
saved latency, resulting in a lower overall latency. By split-
ting frames into multiple detection passes, the utiliza-
tion of the system can be improved, allowing for lower
latency and energy usage due to the use of DLAs.

4 Experimental Setup
Object detection models: In our implementation, we use
various parameterizations of the YOLOv10 [33] and YOLO-
X [11] models. YOLOv10 is the state-of-the-art model based
on the original YOLO single-pass object detection method-
ology. We select YOLOv10 version due to its low inference
time and since it does not require non-max-suppression to
be run on the outputs. However, v10 is not compatible with
NVIDIA DLA since the DLA does not support many of the
activation functions and layers used in the modern archi-
tecture. As such, YOLOX models are used onboard the DLA
since they use simpler layers, which are mostly supported.
Non-max-suppression layers and transpose operations are
still needed for YOLOX and these layers are run on the GPU
since they are not supported on DLA. The GPU + DLA con-
current inference is implemented by using separate CUDA
streams for each model and running them asynchronously.
We characterize performance by measuring the host-side la-
tency for each stream per the details given in Section 3.4.

On the GPU, YOLOv10 nano, small, and medium are used
with possible input sizes between 160 and 1280 with incre-
ments of 160, resulting in 24 possible combinations. These
models are quantized to float-16 precision in order to achieve
state-of-the-art inference times. On the DLA, YOLOX small
andmedium are usedwith input sizes 320, 480 and 480, 640 re-
spectively. All possible input sizes can not be utilized at once,
since the DLA has a hard limit on the number of compiled
models which can be loaded in memory at once. Since each
YOLOX instance still requires running a small amount of lay-
ers at the beginning and end of inference on the GPU, each
model contains multiple compiled sub-engines. As such, a
limit of four possible YOLOX instances can be utilized at once.
An overview of all YOLOv10 and YOLOX models we use is
presented in Table 5 in Appendix A. All metrics are measured
on the MOT17 [23] dataset and averaged over all sequences.
The chosen input size and parameter count pairs rep-

resent a distribution of latencies allowing a range of la-
tency/accuracy tradeoffs to be targeted with DLA based
schedules. The DLA models are quantized to integer-8 preci-
sion using the COCO17 validation images because the DLA
is optimized for integer-8 computation only. The accuracy
changes are modeled according to section 3.3.

For tracking, we utilized ByteTrack [38], which is an in-
dustry standard tracking solution which does not require
additional DNN inferences to produce good tracking results.
Datasets: We use the MOT17 dataset [23] to evaluate our
methodology. This data set was chosen because it contains
a variety of scenarios that encapsulate driving, navigating
through pedestrians, and static camera setups. It also has a
high variation in the density, size, and location of objects
that must be detected and tracked.
Hardware:Themobile device onwhichwe evaluate PMOTHS
is an NVIDIA Orin AGX 64GB development kit (Orin), a pop-
ular multi-accelarator platform used in mobile, edge, and
autonomous computing. The Orin is equipped with 8 Arm
Cortex-A78AE CPU cores, an Ampere generation GPU with
2048 CUDA cores and 64 tensor cores, a pair of second-
generation NVIDIA DLA cores, a PVA, and 64GB of LPDDR5
shared memory. We utilize only a single DLA core at a time,
due to the restrictions deployed by the vendor runtime.
Evaluation setup: We establish the baseline to use a sin-
gle YOLOv10 medium model for object detection with an in-
put size of 1280x1280. This configuration achieves the maxi-
mumpossible accuracy under 30ms end-to-end latency, which
includes data transfer, pre-processing, inference, and post-
processing of the output data. Post-processing accounts for
less than 1% of end-to-end latency, and it is the same across
all DNNs. To allow for larger image sizes on the Orin, we im-
plement a custom CUDA kernel to pre-process the frames,
avoiding any CPU bottlenecks. The ground-truth high priority
regions are the regions determined from the detection output
of the baseline model. The accuracy, reported as the recall,
is computed based on the annotations provided by MOT17.
Comparisons: We compare PMOTHS with the baseline
model (i.e., single YOLOv10), and our adaptations of BigLit-
tle [28] and SHIFT [6] (see Section 2 for details). We select
these two studies because they both aim to achieve energy-
efficient object detection on compute-limited systems, hence
they are the closest state-of-the-art approaches whose im-
plementations are available.

BigLittle [28] is adapted from the initial classification task,
by using the mean confidence score for a given image to
act as the differentiating factor. The confidence threshold to
determine when to use the larger model is found using the
COCO17 validation dataset [18]. The two DNNs we use for
this approach are the baseline YOLOv10 medium model with
1280x1280 input size and YOLOv10 nano with 640x640.

SHIFT [6] is adapted from the single-class single-object
method, considering the aggregate confidence values when
constructing their accuracy estimation method. As such, for
any given frame, instead of using the top confidence score of
the desired class, the mean confidence score of all detections
is utilized. COCO17 validation data [18] is again used to
generate the offline characteristics required for its runtime.

, ,

Baseline BigLittle* SHIFT* PMOTHS0

20

40

60

80

R
ec

al
l (

%
) 71

.7

70

50
.3

68
.4

Overall

Baseline BigLittle* SHIFT* PMOTHS

49
.7

49
.7

26

45
.7

MOT17-02

Baseline BigLittle* SHIFT* PMOTHS

78
.7

78
.7

33
.9

72
.5

MOT17-04

Baseline BigLittle* SHIFT* PMOTHS

68
.6

67
.8 72

.6

68
.9

MOT17-05

Baseline BigLittle* SHIFT* PMOTHS0

20

40

60

80

R
ec

al
l (

%
)

79
.4

77
.6

76
.6

78
.3

MOT17-09

Baseline BigLittle* SHIFT* PMOTHS

72 71
.8

42
.9

69
.7

MOT17-10

Baseline BigLittle* SHIFT* PMOTHS

74
.5

67 62
.2 72

MOT17-11

Baseline BigLittle* SHIFT* PMOTHS

74
.2

73
.3

41
.7

68
.1

MOT17-13

25
.9

26

14
.6

15
.6

0.
91

0.
81

0.
21 0.

29

43
.8

31
.1

14
.4

23

26
.1 30

.7

16
.7

16
.2

0.
91

0.
92

0.
22 0.
25

43
.8

30

13
.2 19

.9

26
.1 30

.8

16
.5

15
.9

0.
91

0.
84

0.
22 0.
25

43
.8

27
.3

13
.4 19

.6

0

10

20

30

En
d2

En
d

Ti
m

e
(m

s)

25
.1

22
.9

13
.1

11
.1

0.00

0.25

0.50

0.75

1.00

En
er

gy
 (J

)0.
91

0.
79

0.
21 0.
24

0

20

40

Po
w

er
 D

ra
w

 (W
)43

.8

34
.6

16

25

25
.9

26
.1

17
.1 18
.7

0.
91

0.
86

0.
27

0.
47

43
.8

33

16
.3

29
.1

26

30
.5

14
.4 17

.6

0.
91 0.

99

0.
20 0.

34

43
.8

32
.7

14
.3

23
.8

26

13
.5

11
.7 14

.2

0.
91

0.
38

0.
16 0.

26

43
.8

28
.7

13
.9

23

0

10

20

30

En
d2

En
d

Ti
m

e
(m

s)

26
.1 29

.8

14

17
.1

0.00

0.25

0.50

0.75

1.00

En
er

gy
 (J

)0.
91 1.

01

0.
20 0.

31

0

20

40

Po
w

er
 D

ra
w

 (W
)43

.8

33
.8

14
.5

23

Figure 11: Comparison of baseline YOLOv10 [33] and BigLittle [28] with PMOTHS. The low priority accuracy knob was set to 0.5
for all scenarios and the priority detection classes used were people and vehicles with recall computed using those class labels.

Since both implementations require modification, we will
label them as BigLittle* and SHIFT* in the results in Section 5.

5 Results
The primary results on the MOT17[23] dataset are shown

in Figure 11. We report accuracy (i.e., Recall), latency (i.e.,
End2End Time), total Energy spent and average Power Draw
for each MOT17-* scenario individually and also present an
Overall corresponding to the mean of the values in all scenar-
ios. The reported end-to-end latencies include all overheads
such as scheduling and preprocessing. Recall corresponds to
the portion of ground truth objects detected, important for
understanding the capability of each method [31].

5.1 Scenes with Single-class HP Objects
We first examine the scenarios in which only a single class

of detection, i.e., person, is present.
MOT17-02 is a static camera scenario in which people are
moving across a large plaza square. The people are mainly
small and occupy a horizontal strip of the scene, see Fig-
ure 4. SHIFT [6] conserves computational resources, but suf-
fers a severe degradation in recall. Since confidence values
are high, it continuously lowers the OD model and ends up
losing many objects. BigLittle [28] spends more resources,
since the single confidence score threshold is consistently
below the value deemed acceptable for shortcut detection.
Thus, it ends up running both DNNs for many frames. We
observe that PMOTHS is able to opportunistically schedule
detection models which use fewer resources and achieve the
same accuracy. This is because PMOTHS is able to conserve
resources by focusing on a smaller subset of each frame. In
particular, PMOTHS uses more energy and power consump-
tion within the same latency envelope, showcasing how the
utilization of additional inferences and parallel hardware is
key to improving accuracy.

MOT17-09 is another static camera scene, with people walk-
ing across a pedestrian street area. The frame coverage of
people varies between fully covered and half covered, alter-
nating. In this scene, the primary challenge is to recover de-
tection on the entire scene once the HP region is smaller.
As seen in Figure 4, people are mainly clustered in the mid-
dle right portion, while Figure 5 shows how people move
throughout the sequence. SHIFT [6] is capable of maintain-
ing detection recall while achieving speedup compared to
baseline, as the majority of objects are large and the use of in-
ferior OD models does not significantly affect recall. BigLit-
tle [28] sees a slight degradation in accuracy and latency
since it spends extra resources running a small inference
for every frame, and there were not enough small detection
frames to make up for the latency. As observed in Figure 11,
PMOTHS is able to achieve baseline accuracy while saving la-
tency / energy / power consumption, but not as significantly
as other scenes. This is because there are few exploitable
subsequences where HP and LP splits are consistent.
MOT17-11 is a scenario with a moving camera with people
occupying a wide variety of areas inside of a shopping mall.
TheHP region changes frequently, meaning that LP detection
must adequately find objects moving in the scene. Figure 4
shows that people occupy primarily a single region, but
Figure 5 shows the cyclic nature of the area considered as
people traverse the camera path. In this scenario, we observe
that BigLittle [28] is able to make gains in all metrics due
to a clear correlation in confidence score and accuracy. In
particular, SHIFT [6] makes similar improvements in overall
performance since it also changes behavior based on runtime
confidence scores. PMOTHS maintains the accuracy while
achieving savings relative to the baseline model. The savings
are not as significant as BigLittle [28] or SHIFT [6] because

PMOTHS: Efficient Multi-Object Tracking for Multi-Accelerator Mobile Systems , ,

PMOTHS mainly exploits the spatial characteristics of the
detection boxes instead of the confidence values.

5.2 Scenes with Multi-class HP Objects

We now examine the scenarios in which two classes of
objects, i.e., person and vehicle, is present.
MOT17-04 is filmed using a static elevated camera on a busy
street. As observed in Figure 4 and Figure 5 the frames are
close to fully occupied by high-priority detection classes,
meaning there exists little room for optimizing detection
without sacrificing accuracy. Notably, BigLittle [28] requires
the use of two DNNs when confidence is low, resulting in a
high end-to-end latency. SHIFT [6] attempts to perform too
much optimization on the object detection model latency,
resulting in severe accuracy degradation. We observe that
PMOTHS has some accuracy loss, but with a decrease in
overall processing latency primarily due to the input size
scaling heuristic.
MOT17-05 is shot by a camera moving through people on
the street. In the beginning of the scene, there are pedes-
trians and vehicles moving along the roadway. The major-
ity of early frames have the high-priority bounding region
taking up the entire frame, but for only a few large objects
making the scenario easy to detect. Large and easy-to-detect
objects result in SHIFT [6] being able to make a significant
improvement in runtime latency. However, despite BigLit-
tle [28] also using confidence score values to look for per-
formance gains, the simple threshold method cannot make
significant improvements. Meanwhile, PMOTHS was able to
make significant improvements, as there were either con-
sistent LP regions that could be exploited, or the input size
scaling heuristic allowed more efficient computation.
MOT17-10 is a scenario in which the camera moves through
a less crowded street. There are few pedestrians, which oc-
cupy a small region, and vehicles to the opposite side in the
early frames. The distribution of objects can be seen in Fig-
ure 4. Both BigLittle [28] and SHIFT [6] face challenges in
achieving performance gains. This is either due to the neces-
sity of running both models –since the small model’s sub-
stantial inferiority limits its usefulness– or because the con-
fidence values fail to align effectively with the complexity of
the detection task. PMOTHS is able to maintain 97% the accu-
racy of the baseline, while achieving a speedup of 1.48x since
it does not rely on confidence values as the only method
with identified optimization potential.
MOT17-13 is a camera mounted on a vehicle that moves
through busy streets occupied by both vehicles and people.
This scenario is the hardest, since the objects vary in position
and size along a thin horizon, and the scene itself changes
significantly from start to end. The distribution of objects

along the horizon can be visualized in Figure 4 and the com-
plex nature of the scene can be assessed from Figure 5. Sim-
ilarly to MOT17-10, BigLittle [28] and SHIFT [6] are not
able to improve performance in a notable way because both
methods strictly use confidence values. However, PMOTHS
can achieve significant savings in latency, energy, power
draw, but misses some portions of the detections, resulting
in slightly lower accuracy. The missed portions are due to a
delay in identifying the new objects once the scene changes.
Performance gains occur because the relevant regions of the
data allow reducing computational resource requirements.
Overall: BigLittle [28] improves latency, energy, and power
draw in two of the seven sequences, while maintaining accu-
racy within 90% of the baseline in 7/7. BigLittle fails because
it optimizes for the best computation time when the detec-
tion task is easy, but when the detection task is difficult or
changes, it results in a runtimeworse than the baselinemodel
it utilizes. SHIFT [6] improves latency, energy, and power
draw in all sequences, but only achieves the accuracy margin
of 90% in 2/7 sequences. SHIFT fails because it aggressively
attempts to optimize performance together with accuracy by
altering model parameter size, input size, and accelerator tar-
get based only on the mean output confidence score. This re-
sults in poor detection accuracy, since a model can produce
high-confidence results when only detecting a few objects.
PMOTHS achieves an improvement in all performance
metrics and achieves accuracy comparable to baseline
in all scenarios, by considering the detection task as a par-
allelization problem within MOT and allocating faster com-
putational resources for high priority objects in the scene.
5.3 MOT Metrics and Validation
To validate whether the detection accuracies achieved

by PMOTHS translate into tracking accuracy, we evaluate
the YOLOv10 [33] baseline, BigLittle [28], SHIFT [6] and
PMOTHS using MOT17 ground truths for pedestrian track-
ing. All methods use ByteTrack [38] as the tracking algo-
rithm with default configurations from the authors’ original

Methodology DetA
(%)

HOTA
(%)

MOTA
(%)

IDF1
(%)

Latency
(ms)

YOLOv10 M 1280x1280 41.82 11.64 6.45 9.21 25.91
YOLOv10 S 1280x1280 39.69 11.81 7.80 9.16 16.66
YOLOv10 N 1280x1280 37.35 11.40 7.89 9.97 12.22
BigLittle [28]* 41.46 11.52 7.06 9.05 25.99
SHIFT [6]* 19.01 11.11 8.44 9.49 14.64
PMOTHS People 41.70 11.78 7.76 9.28 15.65
Table 2: Metrics calculated against the pedestrian class on
the MOT17 dataset. Evaluation is conducted using the official
MOT17 evaluation software [14]. DetA is the detection accu-
racy, HOTA is higher order tracking accuracy [21], MOTA is
multi-object tracking accuracy, and IDF1 is identity F1 score.

, ,

Schedule 17-02 17-04 17-05 17-09 17-10 17-11 17-13

Baseline 0.17% 0.10% 0.12% 20.9% 0.15% 3.67% 0.13%
GPU+GPU 63.3% 74.4% 72.0% 45.1% 62.8% 58.4% 60.1%
GPU+DLA 36.5% 25.5% 27.8% 33.9% 37.0% 37.9% 39.7%
Table 3: Scheduling decision distribution across GPU+GPU,
GPU+DLA executions, and baseline single model fallback on
each MOT17 scenario.

implementations to ensure fairness. The results presented
in Table 2, show that PMOTHS, with the high-priority class
set to people, achieves 99. 7% of the baseline detection ac-
curacy while providing a 1.66x speed-up in the overall data
set. Furthermore, PMOTHS, outperforms the baseline in all
tracking metrics (HOTA, MOTA, IDF1). Of the mean latency
reported in Table 2, 85.1% (13.34ms) is attributed to frame
pre-processing and OD model inference, while total over-
head, including scheduling and image stitching, accounts for
14.9% (2.32ms) per frame, with 1.29ms being spent on frame-
packing and 1.03ms being spent on scheduling on average.
Figure 12 presents the range of energy consumption and

latency across the frames in each sequence while Table 3
shows the distribution of schedules utilized. On sequences
with less optimization potential, such asMOT17-09, PMOTHS
often falls back to the baseline. In contrast, for heavily op-
timizable sequences like MOT17-13, baseline usage is mini-
mal, with the highest DLA-based schedules. Depending on
the position and density of objects, PMOTHS is able to pro-
duce a range of schedules that optimize the accuracy-latency-
energy trade-off.

5.4 LP Accuracy Goal Knob
To ensure that the estimation methodology has the in-

tended effect on the accuracy performance of the system, we
evaluate PMOTHS usingmultiple settings for the low-priority
accuracy knob, which is provided to our scheduler given in
Algorithm 2 with the LP accuracy goal parameter, 𝛾𝑙𝑝 . The
results of this sensitivity analysis are presented in Table 4.
As expected, when the LP knob is increased, more compute-
intensive DNNs are scheduled. The nonlinear relationship on
power draw is due to whether DLA-based schedules are used

Metric 0.4 0.5 0.6 0.7 0.8 0.9

Time (ms) 15.2 15.6 16.8 17.8 19.3 20.3
Energy (J) 0.29 0.30 0.36 0.41 0.48 0.54
Powerdraw (W) 23.3 23.0 24.9 26.4 28.4 29.8
DLA Usage 66.3% 33.5% 13.4% 9.5% 7.5% 5.5%
Baseline Usage 2.8% 2.8% 13.6% 23.9% 41.5% 53.7%
Table 4: Varying LP accuracy goal values and the effect on
runtime metrics and schedules.

0

20

La
te

nc
y

(m
s)

16±2.7 16±3.0
11±3.4

19±4.5 18±3.0 14±3.8 17±3.9

17-02 17-04 17-05 17-09 17-10 17-11 17-13
0.0

0.5

En
er

gy
 (

J)

0.3±0.1 0.3±0.1 0.2±0.1

0.5±0.1
0.3±0.1 0.3±0.1 0.3±0.1

Figure 12: Range in latency and energy usage during runtime
of PMOTHS on each sequence in the MOT17 dataset.

or not. If the LP knob is set to lower than or equal to 0.5 (be-
low the median accuracy allowed), GPU-DLA schedules be-
come more balanced. If the knob is set higher, the precision
limitations of the DLA-based models do not meet the desired
accuracy, hence resulting in schedules that do not use DLA.

5.5 Stability Analysis
To assess whether the stochastic nature of simulated an-

nealing has a significant effect on the average performance
of runtime, a stability analysis was performed in which
PMOTHS was run ten times for each sequence in the MOT17
dataset with a unique random seed. The standard deviations
are as follows: recall: 0.06%, precision: 0.01%, f1: 0.06%, la-
tency 0.13 ms, energy: 0.005 J and power draw: 0.23 W. Ana-
lyzing the produced schedules, there is a 0.4% standard devia-
tion in the amount of GPU-GPU vs. GPU-DLA sub-schedules
utilized. The low variation in run-to-run accuracy and
performance metrics demonstrates that PMOTHS con-
sistently provides the desired accuracy for HP objects
while producing precise computational schedules that
meet the constraints.

5.6 Ablation Study
To better understand the individual contributions of sev-

eral optimizations we employ in PMOTHS, we provide an
ablation study in Appendix B.

6 Conclusion
We introduce PMOTHS to address the challenge of improv-

ing the efficiency of multi-object tracking (MOT) on hetero-
geneous system-on-chips (SoCs). By grouping objects based
on assigned priority classes, PMOTHS optimizes the use of
multiple accelerators to enhance latency and energy con-
sumption without compromising accuracy. Through the use
of two separate contextual regions based on object priority,
PMOTHS can allocate computation dynamically reducing la-
tency and saving energy. The effectiveness of PMOTHS is
demonstrated on the MOT17 dataset where it achieves a re-
duction of up to 2.2x in latency, 3.8x in energy, and 2.2x in
power draw while maintaining 99.7% of detection accuracy
of high-priority detections.

PMOTHS: Efficient Multi-Object Tracking for Multi-Accelerator Mobile Systems , ,

References

[1] MdAdnanArefeen, Sumaiya TabassumNimi, andMd Yusuf Sarwar Ud-
din. Framehopper: Selective processing of video frames in detection-
driven real-time video analytics. In DCOSS’22.

[2] Alejandro Cartas, Martin Kocour, Aravindh Raman, Ilias Leontiadis,
Jordi Luque, Nishanth Sastry, Jose Nuñez Martinez, Diego Perino, and
Carlos Segura. A reality check on inference at mobile networks edge.
In EdgeSys ’19, 2019.

[3] Jack Chen, Hen-Wei Huang, Philipp Rupp, Anjali Sinha, Claas Ehmke,
and Giovanni Traverso. Closed-loop region of interest enabling high
spatial and temporal resolutions in object detection and tracking via
wireless camera. IEEE Access, 9:87340–87350, 2021.

[4] Ismet Dagli and Mehmet E. Belviranli. Shared memory-contention-
aware concurrent dnn execution for diversely heterogeneous system-
on-chips. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’24), 2024.

[5] Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg, and Mehmet E
Belviranli. Axonn: Energy-aware execution of neural network infer-
ence on multi-accelerator heterogeneous socs. In DAC, pages 1069–
1074, 2022.

[6] Justin Davis and Mehmet E Belviranli. Context-aware multi-model
object detection for diversely heterogeneous compute systems. In
DATE, pages 1–6. IEEE, 2024.

[7] P. Dendorfer, H. Rezatofighi, A.Milan, J. Shi, D. Cremers, I. Reid, S. Roth,
K. Schindler, and L. Leal-Taixé. Mot20: A benchmark for multi object
tracking in crowded scenes. arXiv:2003.09003[cs], March 2020. arXiv:
2003.09003.

[8] Anudeep Dhonde, Prabhudev Guntur, and Vinitha Palani. Adaptive
roi with pretrained models for automated retail checkout. In CVPR
Workshops, pages 5507–5510, June 2023.

[9] Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei Su, Tao
Gong, and Hongying Meng. Strongsort: Make deepsort great again.
IEEE Transactions on Multimedia, 25:8725–8737, 2023.

[10] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision. In Mobi-
Com, pages 115–127, 2018.

[11] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox:
Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021.

[12] Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao Han. Deepmix:
mobility-aware, lightweight, and hybrid 3d object detection for head-
sets. In MobiSys’22, pages 28–41, 2022.

[13] Lixiang Han, Zimu Zhou, and Zhenjiang Li. Pantheon: Preemptible
multi-dnn inference on mobile edge gpus. InMobiSys’24, MOBISYS ’24,
page 465–478, New York, NY, USA, 2024. Association for Computing
Machinery.

[14] Arne Hoffhues Jonathon Luiten. Trackeval. https://github.com/
JonathonLuiten/TrackEval, 2020.

[15] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Algorithms and Combinatorics. Springer Berlin Heidelberg,
2007.

[16] Royson Lee, Stylianos I. Venieris, and Nicholas D. Lane. Deep neural
network–based enhancement for image and video streaming systems:
A survey and future directions. ACM Comput. Surv., October 2021.

[17] Chao Liang, Zhipeng Zhang, Xue Zhou, Bing Li, Shuyuan Zhu, and
Weiming Hu. Rethinking the competition between detection and reid
inmultiobject tracking. IEEE Transactions on Image Processing, 31:3182–
3196, 2022.

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence
Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context,
2015.

[19] Miaomiao Liu, Xianzhong Ding, and Wan Du. Continuous, real-time
object detection on mobile devices without offloading. In ICDCS’20.

[20] Chen Liyan. Monte carlo multi-object tracking in wireless sensor net-
works. In 2010 International Conference on Challenges in Environmen-
tal Science and Computer Engineering, volume 2, pages 162–165. IEEE,
2010.

[21] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas
Geiger, Laura Leal-Taixé, and Bastian Leibe. Hota: A higher order
metric for evaluating multi-object tracking. International Journal of
Computer Vision, pages 1–31, 2020.

[22] Ignacio Martinez-Alpiste, Gelayol Golcarenarenji, Qi Wang, and
Jose Maria Alcaraz-Calero. Smartphone-based real-time object recog-
nition architecture for portable and constrained systems. Journal of
Real-Time Image Processing, 19(1):103–115, 2022.

[23] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. MOT16: A
benchmark for multi-object tracking. arXiv:1603.00831 [cs], March
2016. arXiv: 1603.00831.

[24] NVIDIA. Next-level ai performance for next-gen robotics | nvidia jet-
son orin agx. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-orin/, 2024. (accessed on 11/19/2024).

[25] Sankar K Pal, Anima Pramanik, Jhareswar Maiti, and Pabitra Mitra.
Deep learning in multi-object detection and tracking: state of the art.
Applied Intelligence, 51:6400–6429, 2021.

[26] Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li, Trevor Darrell,
and Fisher Yu. Quasi-dense similarity learning for multiple object
tracking. In CVPR, pages 164–173, 2021.

[27] Ioannis Panopoulos, Stylianos Venieris, and Iakovos Venieris. Carin:
Constraint-aware and responsive inference on heterogeneous devices
for single-and multi-dnn workloads. TECS, 2024.

[28] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim,
Gunhee Kim, Sungroh Yoon, and Sungjoo Yoo. Big/little deep neural
network for ultra low power inference. In CODES+ISSS, pages 124–
132, 2015.

[29] Mohammad Mehdi Rastikerdar, Jin Huang, Shiwei Fang, Hui Guan,
and Deepak Ganesan. Cactus: Dynamically switchable context-aware
micro-classifiers for efficient iot inference. InMobiSys’22, page 505–518.
Association for Computing Machinery, 2024.

[30] Ratheesh Ravindran, Michael J Santora, and Mohsin M Jamali. Multi-
object detection and tracking, based on dnn, for autonomous vehicles:
A review. IEEE Sensors Journal, 21(5):5668–5677, 2020.

[31] Kevin Smith, Daniel Gatica-Perez, J Odobez, and Sileye Ba. Evaluating
multi-object tracking. In CVPR workshops. IEEE, 2005.

[32] Stylianos I. Venieris, Ioannis Panopoulos, and Iakovos S. Venieris.
Oodin: An optimised on-device inference framework for heteroge-
neous mobile devices. In 2021 IEEE International Conference on Smart
Computing (SMARTCOMP), pages 1–8, 2021.

[33] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and
Guiguang Ding. Yolov10: Real-time end-to-end object detection. arXiv
preprint arXiv:2405.14458, 2024.

[34] Chien-Yao Wang and Hong-Yuan Mark Liao. YOLOv9: Learning what
you want to learn using programmable gradient information. 2024.

[35] Nicolai Wojke and Alex Bewley. Deep cosine metric learning for
person re-identification. In WACV. IEEE, 2018.

[36] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and
realtime tracking with a deep association metric. In ICIP, pages 3645–
3649. IEEE, 2017.

[37] Kichang Yang, Juheon Yi, Kyungjin Lee, and Youngki Lee. Flexpatch:
Fast and accurate object detection for on-device high-resolution live
video analytics. In INFOCOM’22.

[38] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan
Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. Bytetrack: Multi-
object tracking by associating every detection box. In ECCV’21.

https://github.com/JonathonLuiten/TrackEval
https://github.com/JonathonLuiten/TrackEval
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/

, ,

A Comparison of YOLO Models Used in Experiments

Model Info Metrics Input Size

Model Param Device Precision 160 320 480 640 800 960 1120 1280

YOLOv10[33]

M GPU FP16

Recall 0.4x 0.64x 0.75x 0.83x 0.91x 0.96x 0.99x 1.0x
Latency 3.48ms 4.97ms 6.98ms 9.45ms 12.31ms 15.84ms 21.21ms 25.91ms
Energy 0.04J 0.07J 0.14J 0.24J 0.37J 0.54J 0.73J 0.91J
Power 17.65W 24.52W 31.29W 35.57W 40.2W 42.0W 43.73W 43.8W

S GPU FP16

Recall 0.36x 0.59x 0.72x 0.8x 0.87x 0.92x 0.96x 0.98x
Latency 2.94ms 3.88ms 4.99ms 6.31ms 8.69ms 10.04ms 14.01ms 16.66ms
Energy 0.02J 0.04J 0.07J 0.11J 0.18J 0.25J 0.34J 0.44J
Power 15.13W 20.26W 25.27W 29.23W 32.11W 35.51W 36.08W 37.91W

N GPU FP16

Recall 0.28x 0.53x 0.66x 0.75x 0.82x 0.87x 0.92x 0.93x
Latency 2.82ms 3.63ms 4.35ms 5.02ms 6.68ms 7.51ms 10.59ms 12.22ms
Energy 0.02J 0.03J 0.04J 0.06J 0.09J 0.13J 0.18J 0.23J
Power 13.08W 16.41W 20.44W 23.1W 26.24W 28.45W 29.87W 31.66W

YOLOX [11]

M DLA INT8

Recall 0.54x 0.97x 0.99x 1.0x 0.95x 0.96x 0.86x 0.82x
Latency 3.18ms 4.51ms 7.08ms 11.21ms 16.42ms 22.87ms 30.46ms 40.05ms
Energy 0.03J 0.04J 0.08J 0.13J 0.21J 0.29J 0.4J 0.55J
Power 12.72W 13.4W 14.67W 14.79W 14.74W 14.69W 14.75W 15.24W

S DLA INT8

Recall 0.53x 0.95x 0.92x 0.94x 0.95x 0.43x 0.34x 0.24x
Latency 2.69ms 3.42ms 4.91ms 7.41ms 10.52ms 14.23ms 18.9ms 23.76ms
Energy 0.02J 0.03J 0.05J 0.08J 0.12J 0.17J 0.23J 0.3J
Power 11.96W 12.71W 14.66W 15.18W 15.08W 15.15W 15.3W 15.32W

Table 5: Performance comparision of YOLOv10 and YOLOX models across all MOT17 sequence. All metrics are reported as the
average for each frame across all sequences. Power draw is reported as the total system draw to run the model.

PMOTHS: Efficient Multi-Object Tracking for Multi-Accelerator Mobile Systems , ,

B Ablation Study
In order to understand the individual contributions of

several optimizations we deploy in PMOTHS, we conduct an
ablation study. We iteratively add features into PMOTHS and
compare the resulting accuracy, latency, and energy usage
over the entire dataset. The key features to be assessed are
the impact of 1) LP detection and frame packing and 2) the
utilization of parallel hardware to augment the performance
of the system.
Baseline: The YOLOv10M [33] model with an input size of
1280x1280 representing the standard detection performance.
ROI: A region-of-interest (ROI) strategy that processes only
the bounding box of previous HP detections with some
padding. If no prior detections exist, the full frame is used.
This evaluates accuracy trade-offs from focusing only on rel-
evant regions.
Dynamic: A dynamic model selection approach where we
pick a YOLOv10M version with lower resolution input size
that matches the ROI bounding box. This approach improves
the ROI method and represents the lower bound on latency,
energy and power needed to process the HP region using
the baseline model (i.e., YOLOv10M).
OnlyGPU: This version is based on PMOTHS’s HP/LP-based
MOT execution strategy, but the scheduler only uses GPU
and not the DLA. It also considers the impact of LP detection
on accuracy and uses the same scheduling mechanism as
PMOTHS but switches back to the baseline model unless
HP/LP-based processing is expected to be faster.
PMOTHS: The full PMOTHS system, incorporating GPU-
DLA scheduling for optimal performance.
Each method is evaluated on MOT17 as detailed in Sec-

tion 4. Figure 13 presents the relative speedup of each version
for different metrics, in comparison to the previous version.
ROI: ROI strategy provides minimal benefits in latency, en-
ergy and power draw at the expense of reduced recall. Ac-
curacy loss occurs when detections fall outside the selected
region, leading to rapid over-focusing. Latency gains come

Baseline ROI Dynamic OnlyGPU PMOTHS
1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

Im
pr

ov
em

en
t (

x)

Recall
Latency
Energy
Power Draw

Figure 13: Comparison of various simple methods and por-
tions of the PMOTHS methodology to identify the important
contributions. Evaluated on the MOT17 dataset with results
averaged across all video sequences.

primarily from reduced data transfer between CPU and GPU
before preprocessing.
Dynamic: Dynamically selecting the model with smaller in-
put size based on the ROI size improves performance, but
further reduces recall. Moving objects or cameras can cause
excessive focusing, and hence omitting important informa-
tion. While dynamic scaling achieves nearly 1.25x speedup
over the baseline, its accuracy-latency trade-off remains in-
efficient, with significant accuracy losses in highly dynamic
scenarios. In contrast, PMOTHS provides a 1.6x speedup with
greater than 3.0x gains in energy usage while maintaining
nearly all recall.
OnlyGPU: This variant showcases the benefits of PMOTHS’s
novel LP identification and binpacking algorithms with the
exception that it does not take advantage of multiple acceler-
ators (i.e., DLAs in addition to GPUs). Therefore, the result-
ing schedules serialize HP and LP processing on the same
GPU. OnlyGPU improves accuracy over ROI and Dynamic
methods, while also improving latency, energy, and power
draw since it can exploit smaller models for LP regions.
PMOTHS: Using additional hardware, PMOTHS improves
latency more than the GPU-only schedules and thus maxi-
mizes gains in latency and energy usage (Figure 13). How-
ever, compared to GPU-only schedules, the power draw is
slightly higher since both accelerators are being used at once.
Multi-accelerator execution further optimizes performance,
underscoring the importance of LP region processing and
full hardware utilization.

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach: PMOTHS
	3.1 Identification of High Priority Regions
	3.2 Frame Packing for Low Priority Regions
	3.3 Predicting Model Accuracy and Latency
	3.4 Runtime Scheduler
	3.5 Summary

	4 Experimental Setup
	5 Results
	5.1 Scenes with Single-class HP Objects
	5.2 Scenes with Multi-class HP Objects
	5.3 MOT Metrics and Validation
	5.4 LP Accuracy Goal Knob
	5.5 Stability Analysis
	5.6 Ablation Study

	6 Conclusion
	References
	A Comparison of YOLO Models Used in Experiments
	B Ablation Study

